Gait Variability and Complexity during Single and Dual-Task Walking on Different Surfaces in Outdoor Environment
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA_FTK_2019_006
Univerzita Palackého v Olomouci
PubMed
34300532
PubMed Central
PMC8309897
DOI
10.3390/s21144792
PII: s21144792
Knihovny.cz E-zdroje
- Klíčová slova
- cognitive dual-task, daily living gait, manual dual-task, real life gait, root mean square, sample entropy, trunk acceleration,
- MeSH
- chůze (způsob) * MeSH
- chůze * MeSH
- lidé MeSH
- mladý dospělý MeSH
- rychlost chůze MeSH
- trup MeSH
- zrychlení MeSH
- Check Tag
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Nowadays, gait assessment in the real life environment is gaining more attention. Therefore, it is desirable to know how some factors, such as surfaces (natural, artificial) or dual-tasking, influence real life gait pattern. The aim of this study was to assess gait variability and gait complexity during single and dual-task walking on different surfaces in an outdoor environment. Twenty-nine healthy young adults aged 23.31 ± 2.26 years (18 females, 11 males) walked at their preferred walking speed on three different surfaces (asphalt, cobbles, grass) in single-task and in two dual-task conditions (manual task-carrying a cup filled with water, cognitive task-subtracting the number 7). A triaxial inertial sensor attached to the lower trunk was used to record trunk acceleration during gait. From 15 strides, sample entropy (SampEn) as an indicator of gait complexity and root mean square (RMS) as an indicator of gait variability were computed. The findings demonstrate that in an outdoor environment, the surfaces significantly impacted only gait variability, not complexity, and that the tasks affected both gait variability and complexity in young healthy adults.
Institut Universitaire de France 75231 Paris France
Laboratory AGEIS Université Grenoble Alpes AGEIS 38000 Grenoble France
Zobrazit více v PubMed
Decker L.M., Cignetti F., Stergiou N. Complexity and human gait. Rev. Andal. Med. Deport. 2010;3:2–12.
Blair S., Lake M.J., Ding R., Sterzing T. Magnitude and variability of gait characteristics when walking on an irregular surface at different speeds. Hum. Mov. Sci. 2018;59:112–120. doi: 10.1016/j.humov.2018.04.003. PubMed DOI
Apps C., Sterzing T., O’Brien T., Ding R., Lake M. Biomechanical locomotion adaptations on uneven surfaces can be simulated with a randomly deforming shoe midsole. Footwear Sci. 2017;9:65–77. doi: 10.1080/19424280.2017.1293175. DOI
Sterzing T., Apps C., Ding R., Cheung J.T.-M. Walking on an unpredictable irregular surface changes lower limb biomechanics and subjective perception compared to walking on a regular surface. J. Foot Ankle Res. 2014;7:A81. doi: 10.1186/1757-1146-7-S1-A81. DOI
Gates D.H., Wilken J.M., Scott S.J., Sinitski E.H., Dingwell J.B. Kinematic strategies for walking across a destabilizing rock surface. Gait Posture. 2012;35:36–42. doi: 10.1016/j.gaitpost.2011.08.001. PubMed DOI PMC
Menz H.B., Lord S.R., Fitzpatrick R.C. Acceleration patterns of the head and pelvis when walking on level and irregular surfaces. Gait Posture. 2003;18:35–46. doi: 10.1016/S0966-6362(02)00159-5. PubMed DOI
Thies S.B., Richardson J.K., Ashton-Miller J.A. Effects of surface irregularity and lighting on step variability during gait: A study in healthy young and older women. Gait Posture. 2005;22:26–31. doi: 10.1016/j.gaitpost.2004.06.004. PubMed DOI
MacLellan M.J., Patla A.E. Adaptations of walking pattern on a compliant surface to regulate dynamic stability. Exp. Brain Res. 2006;173:521–530. doi: 10.1007/s00221-006-0399-5. PubMed DOI
Marigold D.S., Patla A.E. Age-related changes in gait for multi-surface terrain. Gait Posture. 2008;27:689–696. doi: 10.1016/j.gaitpost.2007.09.005. PubMed DOI
Allet L., Armand S., de Bie R.A., Pataky Z., Aminian K., Herrmann F.R., de Bruin E.D. Gait alterations of diabetic patients while walking on different surfaces. Gait Posture. 2009;29:488–493. doi: 10.1016/j.gaitpost.2008.11.012. PubMed DOI
Beurskens R., Steinberg F., Antoniewicz F., Wolff W., Granacher U. Neural correlates of dual-task walking: Effects of cognitive versus motor interference in young adults. Neural Plast. 2016;2016:1–9. doi: 10.1155/2016/8032180. PubMed DOI PMC
Kikkert L.H.J., Vuillerme N., van Campen J.P., Hortobágyi T., Lamoth C.J. Walking ability to predict future cognitive decline in old adults: A scoping review. Ageing Res. Rev. 2016;27:1–14. doi: 10.1016/j.arr.2016.02.001. PubMed DOI
Pashler H. Dual-task interference in simple tasks: Data and theory. Psychol. Bull. 1994;116:220–244. doi: 10.1037/0033-2909.116.2.220. PubMed DOI
Tombu M., Jolicoeur P. A central capacity sharing model of dual-task performance. J. Exp. Psychol. Hum. Percept. Perform. 2003;29:3–18. doi: 10.1037/0096-1523.29.1.3. PubMed DOI
McFadyen B.J., Gagne M.È., Cossette I., Ouellet M.C. Using dual task walking as an aid to assess executive dysfunction ecologically in neurological populations: A narrative review. Neuropsychol. Rehabil. 2017;27:722–743. doi: 10.1080/09602011.2015.1100125. PubMed DOI
Yogev G., Hausdorff J.M., Giladi N. The role of executive function and attention in gait. Mov. Disord. 2008;23:329–472. doi: 10.1002/mds.21720. PubMed DOI PMC
Oh-Park M., Holtzer R., Mahoney J., Wang C., Raghavan P., Verghese J. Motor dual-task effect on gait and task of upper limbs in older adults under specific task prioritization: Pilot study. Aging Clin. Exp. Res. 2013;25:99–106. doi: 10.1007/s40520-013-0014-0. PubMed DOI PMC
Stöckel T., Mau-Moeller A. Cognitive control processes associated with successful gait performance in dual-task walking in healthy young adults. Psychol. Res. 2020;84:1766–1776. doi: 10.1007/s00426-019-01184-4. PubMed DOI
Yogev-Seligmann G., Rotem-Galili Y., Mirelman A., Dickstein R., Giladi N., Hausdorff J. How does explicit prioritization alter walking during dual-task performance? Effects of age and sex on gait speed and variability. Phys. Ther. 2010;90:177–186. doi: 10.2522/ptj.20090043. PubMed DOI PMC
Pizzamiglio S., Abdalla H., Naeem U., Turner D.L. Neural predictors of gait stability when walking freely in the real-world. J. Neuroeng. Rehabil. 2018;15:1–11. doi: 10.1186/s12984-018-0357-z. PubMed DOI PMC
Jarchi D., Pope J., Lee T.K.M., Tamjidi L., Mirzaei A., Sanei S. A review on accelerometry based gait analysis and emerging clinical applications. IEEE Rev. Biomed. Eng. 2018;11:177–194. doi: 10.1109/RBME.2018.2807182. PubMed DOI
Roberts M., Mongeon D., Prince F. Biomechanical parameters for gait analysis: A systematic review of healthy human gait. Phys. Ther. Rehabil. 2017;4:1–17. doi: 10.7243/2055-2386-4-6. DOI
Sekine M., Tamura T., Yoshida M., Suda Y., Kimura Y., Miyoshi H., Kijima Y., Higashi Y., Fujimoto T. A gait abnormality measure based on root mean square of trunk acceleration. J. Neuroeng. Rehabil. 2013;10:1–7. doi: 10.1186/1743-0003-10-118. PubMed DOI PMC
Iosa M., Fusco A., Morone G., Pratesi L., Coiro P., Venturiero V., Angelis D., Bragoni M., Paolucci S. Assessment of upper-body dynamic stability during walking in patients with subacute stroke. J. Rehabil. Res. Dev. 2012;49:439–450. doi: 10.1682/JRRD.2011.03.0057. PubMed DOI
Buckley C., Galna B., Rochester L., Mazzà C. Attenuation of upper body accelerations during gait: Piloting an innovative assessment tool for Parkinson’s disease. BioMed Res. Int. 2015;5:1–6. doi: 10.1155/2015/865873. PubMed DOI PMC
Arshi A.R., Mehdizadeh S., Davids K. Quantifying foot placement variability and dynamic stability of movement to assess control mechanisms during forward and lateral running. J. Biomech. 2015;48:4020–4025. doi: 10.1016/j.jbiomech.2015.09.046. PubMed DOI
Cullen S., Montero-Odasso M., Bherer L., Almeida Q., Fraser S., Muir-Hunter S., Li K., Liu-Ambrose T., McGibbon C.A., McIlroy W., et al. Guidelines for gait assessments in the Canadian consortium on neurodegeneration in aging (CCNA) Can. Geriatr. J. 2018;21:157–165. doi: 10.5770/cgj.21.298. PubMed DOI PMC
Richman J.S., Moorman J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Circ. Physiol. 2000;278:2039–2049. doi: 10.1152/ajpheart.2000.278.6.H2039. PubMed DOI
Lamoth C.J., Ainsworth E., Polomski W., Houdijk H. Variability and stability analysis of walking of transfemoral amputees. Med. Eng. Phys. 2010;32:1009–1014. doi: 10.1016/j.medengphy.2010.07.001. PubMed DOI
Yentes J.M., Hunt N., Schmid K.K., Kaipust J.P., McGrath D., Stergiou N. The appropriate use of approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng. 2013;41:349–365. doi: 10.1007/s10439-012-0668-3. PubMed DOI PMC
Leverick G., Szturm T., Wu C.Q. Using entropy measures to characterize human locomotion. J. Biomech. Eng. 2014;136:121002. doi: 10.1115/1.4028410. PubMed DOI
Bisi M.C., Stagni R. Development of gait motor control: What happens after a sudden increase in height during adolescence? Biomed. Eng. Online. 2016;15:1–12. doi: 10.1186/s12938-016-0159-0. PubMed DOI PMC
Lamoth C.J., Van Deudekom F.J., Van Campen J.P., Appels B.A., De Vries O.J., Pijnappels M. Gait stability and variability measures show effects of impaired cognition and dual tasking in frail people. J. Neuroeng. Rehabil. 2011;8:1–9. doi: 10.1186/1743-0003-8-2. PubMed DOI PMC
Ahmadi S., Wu C., Sepehri N., Kantikar A., Nankar M., Szturm T. The effects of aging and dual tasking on human gait complexity during treadmill walking: A comparative study using quantized dynamical entropy and sample entropy. J. Biomech. Eng. 2018;140:1–10. doi: 10.1115/1.4037945. PubMed DOI
Magnani R.M., Lehnen G.C., Rodrigues F.B., de Sá ESouza G.S., de Oliveira Andrade A., Vieira M.F. Local dynamic stability and gait variability during attentional tasks in young adults. Gait Posture. 2017;55:105–108. doi: 10.1016/j.gaitpost.2017.04.019. PubMed DOI
Snijders A.H., van de Warrenburg B.P., Giladi N., Bloem B.R. Neurological gait disorders in elderly people: Clinical approach and classification. Lancet Neurol. 2007;6:63–74. doi: 10.1016/S1474-4422(06)70678-0. PubMed DOI
Srygley J.M., Mirelman A., Herman T., Giladi N., Hausdorff J.M. When does walking alter thinking? Age and task associated findings. Brain Res. 2009;1253:92–99. doi: 10.1016/j.brainres.2008.11.067. PubMed DOI PMC
Beauchet O., Allali G., Sekhon H., Verghese J., Guilain S., Steinmetz J.P., Kressig R.W., Barden J.M., Szturm T., Launay C.P., et al. Guidelines for assessment of gait and reference values for spatiotemporal gait parameters in older adults: The biomathics and canadian gait consortiums initiative. Front. Hum. Neurosci. 2017;11:353. doi: 10.3389/fnhum.2017.00353. PubMed DOI PMC
Yang L., He C., Pang M.Y.C. Reliability and validity of dual-task mobility assessments in people with chronic stroke. PLoS ONE. 2016;11:e0147833. doi: 10.1371/journal.pone.0147833. PubMed DOI PMC
Zijlstra W., Hof A.L. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture. 2003;18:1–10. doi: 10.1016/S0966-6362(02)00190-X. PubMed DOI
Costa M., Peng C.-K., Goldberger A.L., Hausdorff J.M. Multiscale entropy analysis of human gait dynamics. Phys. Stat. Mech. Appl. 2003;330:53–60. doi: 10.1016/j.physa.2003.08.022. PubMed DOI PMC
Costa M., Goldberger A.L., Peng C.-K. Multiscale entropy analysis of biological signals. Phys. Rev. Stat. Nonlinear Soft Matter. 2005;71:021906. doi: 10.1103/PhysRevE.71.021906. PubMed DOI
Costa M., Goldberger A.L., Peng C.-K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2002;89:068102. doi: 10.1103/PhysRevLett.89.068102. PubMed DOI
Goldberger A.L., Amaral L.A., Glass L., Hausdorff J.M., Ivanov P.C., Mark R.G., Mietus J.E., Moody G.B., Peng C.-K., Stanley H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation. 2000;101:E215–E220. doi: 10.1161/01.CIR.101.23.e215. PubMed DOI
Menant J.C., Steele J.R., Menz H.B., Munro B.J., Lord S.R. Effects of walking surfaces and footwear on temporo-spatial gait parameters in young and older people. Gait Posture. 2009;29:392–397. doi: 10.1016/j.gaitpost.2008.10.057. PubMed DOI
Hsieh Y., Cho C. Age-related changes of arm movements in dual task condition when walking on different surfaces. Hum. Mov. Sci. 2012;31:190–201. doi: 10.1016/j.humov.2011.01.005. PubMed DOI
Coleman T.D., Lawrence H.J., Childers W.L. Standardizing methodology for research with uneven terrains focused on dynamic balance during gait. J. Appl. Biomech. 2016;32:599–602. doi: 10.1123/jab.2016-0014. PubMed DOI
Chang M.D., Sejdic E., Wright V., Chau T. Measures of dynamic stability: Detecting differences between walking overground and on a compliant surface. Hum. Mov. Sci. 2010;29:977–986. doi: 10.1016/j.humov.2010.04.009. PubMed DOI
Patel P., Bhatt T. Task matters: Influence of different cognitive tasks on cognitive-motor interference during dual-task walking in chronic stroke survivors. Top. Stroke Rehabil. 2014;21:347–357. doi: 10.1310/tsr2104-347. PubMed DOI
Springer S., Giladi N., Peretz C., Yogev G., Simon E.S., Hausdorff J.M. Dual-tasking effects on gait variability: The role of aging, falls, and executive function. Mov. Disord. 2006;21:950–957. doi: 10.1002/mds.20848. PubMed DOI
Park G.Y., Yeo S.S., Kwon Y.C., Song H.S., Lim Y.J., Ha Y.M., Han S.H., Oh S. Changes in gait parameters and gait variability in young adults during a cognitive task while slope and flat walking. Healthcare. 2020;8:30. doi: 10.3390/healthcare8010030. PubMed DOI PMC
Priest A.W., Salamon K.B., Hollman J.H. Age-related differences in dual task walking: A cross sectional study. J. Neuroeng. Rehabil. 2008;5:1–8. doi: 10.1186/1743-0003-5-29. PubMed DOI PMC
Laessoe U., Hoeck H.C., Simonsen O., Voigt M. Residual attentional capacity amongst young and elderly during dual and triple task walking. Hum. Mov. Sci. 2008;27:496–512. doi: 10.1016/j.humov.2007.12.001. PubMed DOI
Prupetkaewa P., Lugade V., Kamnardsiri T., Silsupadol P. Cognitive and visual demands, but not gross motor demand, of concurrent smartphone use affect laboratory and free-living gait among young and older adults. Gait Posture. 2019;68:30–36. doi: 10.1016/j.gaitpost.2018.11.003. PubMed DOI
Plummer P., Apple S., Dowd C., Keith E. Texting and walking: Effect of environmental setting and task prioritization on dual-task interference in healthy young adults. Gait Posture. 2015;41:46–51. doi: 10.1016/j.gaitpost.2014.08.007. PubMed DOI
Santhiranayagam B.K., Lai D.H., Sparrow W.A., Begg R.K. Minimum toe clearance events in divided attention treadmill walking in older and young adults: A cross-sectional study. J. Neuroeng. Rehabil. 2015;12:1–9. doi: 10.1186/s12984-015-0052-2. PubMed DOI PMC
Krasovsky T., Weiss P.L., Kizony R. Older adults pay an additional cost when texting and walking: Effects of age, environment, and use of mixed reality on dual-task performance. Phys. Ther. 2018;98:549–559. doi: 10.1093/ptj/pzy047. PubMed DOI
Donelan J.M., Shipman D.W., Kram R., Kuo A.D. Mechanical and metabolic requirements for active lateral stabilization in human walking. J. Biomech. 2004;37:827–835. doi: 10.1016/j.jbiomech.2003.06.002. PubMed DOI
Bauby C.E., Kuo A.D. Active control of lateral balance in human walking. J. Biomech. 2000;33:1433–1440. doi: 10.1016/S0021-9290(00)00101-9. PubMed DOI
Schrager M.A., Kelly V.E., Price R., Ferrucci L., Shumway-Cook A. The effects of age on mediolateral stability during normal and narrow base walking. Gait Posture. 2008;28:466–471. doi: 10.1016/j.gaitpost.2008.02.009. PubMed DOI PMC
Hamacher D., Koch M., Löwe S., Zech A. Less noise during dual-task walking in healthy young adults: An analysis of different gait variability components. Exp. Brain Res. 2019;237:3185–3193. doi: 10.1007/s00221-019-05664-2. PubMed DOI
Hamacher D., Hamacher D., Müller R., Schega L., Zech A. The effect of a cognitive dual task on the control of minimum toe clearance while walking. Motor Control. 2019;23:344–353. doi: 10.1123/mc.2018-0006. PubMed DOI
Beilock S.L., Carr T.H., MacMahon C., Starkes J.L. When paying attention becomes counter productive: Impact of divided versus skill-focused attention on novice and experienced performance of sensorimotor skills. J. Exp. Psychol. Appl. 2002;8:6–16. doi: 10.1037/1076-898X.8.1.6. PubMed DOI
Beilock S.L., Gray R. From attentional control to attentional spillover: A skill-level investigation of attention, movement, and performance outcomes. Hum. Mov. Sci. 2012;31:1473–1499. doi: 10.1016/j.humov.2012.02.014. PubMed DOI
Tamburini P., Storm F., Buckley C., Bisi M.C., Stagni R., Mazzà C. Moving from laboratory to real life conditions: Influence on the assessment of variability and stability of gait. Gait Posture. 2018;59:248–252. doi: 10.1016/j.gaitpost.2017.10.024. PubMed DOI