Gait Variability and Complexity during Single and Dual-Task Walking on Different Surfaces in Outdoor Environment

. 2021 Jul 14 ; 21 (14) : . [epub] 20210714

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34300532

Grantová podpora
IGA_FTK_2019_006 Univerzita Palackého v Olomouci

Nowadays, gait assessment in the real life environment is gaining more attention. Therefore, it is desirable to know how some factors, such as surfaces (natural, artificial) or dual-tasking, influence real life gait pattern. The aim of this study was to assess gait variability and gait complexity during single and dual-task walking on different surfaces in an outdoor environment. Twenty-nine healthy young adults aged 23.31 ± 2.26 years (18 females, 11 males) walked at their preferred walking speed on three different surfaces (asphalt, cobbles, grass) in single-task and in two dual-task conditions (manual task-carrying a cup filled with water, cognitive task-subtracting the number 7). A triaxial inertial sensor attached to the lower trunk was used to record trunk acceleration during gait. From 15 strides, sample entropy (SampEn) as an indicator of gait complexity and root mean square (RMS) as an indicator of gait variability were computed. The findings demonstrate that in an outdoor environment, the surfaces significantly impacted only gait variability, not complexity, and that the tasks affected both gait variability and complexity in young healthy adults.

Zobrazit více v PubMed

Decker L.M., Cignetti F., Stergiou N. Complexity and human gait. Rev. Andal. Med. Deport. 2010;3:2–12.

Blair S., Lake M.J., Ding R., Sterzing T. Magnitude and variability of gait characteristics when walking on an irregular surface at different speeds. Hum. Mov. Sci. 2018;59:112–120. doi: 10.1016/j.humov.2018.04.003. PubMed DOI

Apps C., Sterzing T., O’Brien T., Ding R., Lake M. Biomechanical locomotion adaptations on uneven surfaces can be simulated with a randomly deforming shoe midsole. Footwear Sci. 2017;9:65–77. doi: 10.1080/19424280.2017.1293175. DOI

Sterzing T., Apps C., Ding R., Cheung J.T.-M. Walking on an unpredictable irregular surface changes lower limb biomechanics and subjective perception compared to walking on a regular surface. J. Foot Ankle Res. 2014;7:A81. doi: 10.1186/1757-1146-7-S1-A81. DOI

Gates D.H., Wilken J.M., Scott S.J., Sinitski E.H., Dingwell J.B. Kinematic strategies for walking across a destabilizing rock surface. Gait Posture. 2012;35:36–42. doi: 10.1016/j.gaitpost.2011.08.001. PubMed DOI PMC

Menz H.B., Lord S.R., Fitzpatrick R.C. Acceleration patterns of the head and pelvis when walking on level and irregular surfaces. Gait Posture. 2003;18:35–46. doi: 10.1016/S0966-6362(02)00159-5. PubMed DOI

Thies S.B., Richardson J.K., Ashton-Miller J.A. Effects of surface irregularity and lighting on step variability during gait: A study in healthy young and older women. Gait Posture. 2005;22:26–31. doi: 10.1016/j.gaitpost.2004.06.004. PubMed DOI

MacLellan M.J., Patla A.E. Adaptations of walking pattern on a compliant surface to regulate dynamic stability. Exp. Brain Res. 2006;173:521–530. doi: 10.1007/s00221-006-0399-5. PubMed DOI

Marigold D.S., Patla A.E. Age-related changes in gait for multi-surface terrain. Gait Posture. 2008;27:689–696. doi: 10.1016/j.gaitpost.2007.09.005. PubMed DOI

Allet L., Armand S., de Bie R.A., Pataky Z., Aminian K., Herrmann F.R., de Bruin E.D. Gait alterations of diabetic patients while walking on different surfaces. Gait Posture. 2009;29:488–493. doi: 10.1016/j.gaitpost.2008.11.012. PubMed DOI

Beurskens R., Steinberg F., Antoniewicz F., Wolff W., Granacher U. Neural correlates of dual-task walking: Effects of cognitive versus motor interference in young adults. Neural Plast. 2016;2016:1–9. doi: 10.1155/2016/8032180. PubMed DOI PMC

Kikkert L.H.J., Vuillerme N., van Campen J.P., Hortobágyi T., Lamoth C.J. Walking ability to predict future cognitive decline in old adults: A scoping review. Ageing Res. Rev. 2016;27:1–14. doi: 10.1016/j.arr.2016.02.001. PubMed DOI

Pashler H. Dual-task interference in simple tasks: Data and theory. Psychol. Bull. 1994;116:220–244. doi: 10.1037/0033-2909.116.2.220. PubMed DOI

Tombu M., Jolicoeur P. A central capacity sharing model of dual-task performance. J. Exp. Psychol. Hum. Percept. Perform. 2003;29:3–18. doi: 10.1037/0096-1523.29.1.3. PubMed DOI

McFadyen B.J., Gagne M.È., Cossette I., Ouellet M.C. Using dual task walking as an aid to assess executive dysfunction ecologically in neurological populations: A narrative review. Neuropsychol. Rehabil. 2017;27:722–743. doi: 10.1080/09602011.2015.1100125. PubMed DOI

Yogev G., Hausdorff J.M., Giladi N. The role of executive function and attention in gait. Mov. Disord. 2008;23:329–472. doi: 10.1002/mds.21720. PubMed DOI PMC

Oh-Park M., Holtzer R., Mahoney J., Wang C., Raghavan P., Verghese J. Motor dual-task effect on gait and task of upper limbs in older adults under specific task prioritization: Pilot study. Aging Clin. Exp. Res. 2013;25:99–106. doi: 10.1007/s40520-013-0014-0. PubMed DOI PMC

Stöckel T., Mau-Moeller A. Cognitive control processes associated with successful gait performance in dual-task walking in healthy young adults. Psychol. Res. 2020;84:1766–1776. doi: 10.1007/s00426-019-01184-4. PubMed DOI

Yogev-Seligmann G., Rotem-Galili Y., Mirelman A., Dickstein R., Giladi N., Hausdorff J. How does explicit prioritization alter walking during dual-task performance? Effects of age and sex on gait speed and variability. Phys. Ther. 2010;90:177–186. doi: 10.2522/ptj.20090043. PubMed DOI PMC

Pizzamiglio S., Abdalla H., Naeem U., Turner D.L. Neural predictors of gait stability when walking freely in the real-world. J. Neuroeng. Rehabil. 2018;15:1–11. doi: 10.1186/s12984-018-0357-z. PubMed DOI PMC

Jarchi D., Pope J., Lee T.K.M., Tamjidi L., Mirzaei A., Sanei S. A review on accelerometry based gait analysis and emerging clinical applications. IEEE Rev. Biomed. Eng. 2018;11:177–194. doi: 10.1109/RBME.2018.2807182. PubMed DOI

Roberts M., Mongeon D., Prince F. Biomechanical parameters for gait analysis: A systematic review of healthy human gait. Phys. Ther. Rehabil. 2017;4:1–17. doi: 10.7243/2055-2386-4-6. DOI

Sekine M., Tamura T., Yoshida M., Suda Y., Kimura Y., Miyoshi H., Kijima Y., Higashi Y., Fujimoto T. A gait abnormality measure based on root mean square of trunk acceleration. J. Neuroeng. Rehabil. 2013;10:1–7. doi: 10.1186/1743-0003-10-118. PubMed DOI PMC

Iosa M., Fusco A., Morone G., Pratesi L., Coiro P., Venturiero V., Angelis D., Bragoni M., Paolucci S. Assessment of upper-body dynamic stability during walking in patients with subacute stroke. J. Rehabil. Res. Dev. 2012;49:439–450. doi: 10.1682/JRRD.2011.03.0057. PubMed DOI

Buckley C., Galna B., Rochester L., Mazzà C. Attenuation of upper body accelerations during gait: Piloting an innovative assessment tool for Parkinson’s disease. BioMed Res. Int. 2015;5:1–6. doi: 10.1155/2015/865873. PubMed DOI PMC

Arshi A.R., Mehdizadeh S., Davids K. Quantifying foot placement variability and dynamic stability of movement to assess control mechanisms during forward and lateral running. J. Biomech. 2015;48:4020–4025. doi: 10.1016/j.jbiomech.2015.09.046. PubMed DOI

Cullen S., Montero-Odasso M., Bherer L., Almeida Q., Fraser S., Muir-Hunter S., Li K., Liu-Ambrose T., McGibbon C.A., McIlroy W., et al. Guidelines for gait assessments in the Canadian consortium on neurodegeneration in aging (CCNA) Can. Geriatr. J. 2018;21:157–165. doi: 10.5770/cgj.21.298. PubMed DOI PMC

Richman J.S., Moorman J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Circ. Physiol. 2000;278:2039–2049. doi: 10.1152/ajpheart.2000.278.6.H2039. PubMed DOI

Lamoth C.J., Ainsworth E., Polomski W., Houdijk H. Variability and stability analysis of walking of transfemoral amputees. Med. Eng. Phys. 2010;32:1009–1014. doi: 10.1016/j.medengphy.2010.07.001. PubMed DOI

Yentes J.M., Hunt N., Schmid K.K., Kaipust J.P., McGrath D., Stergiou N. The appropriate use of approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng. 2013;41:349–365. doi: 10.1007/s10439-012-0668-3. PubMed DOI PMC

Leverick G., Szturm T., Wu C.Q. Using entropy measures to characterize human locomotion. J. Biomech. Eng. 2014;136:121002. doi: 10.1115/1.4028410. PubMed DOI

Bisi M.C., Stagni R. Development of gait motor control: What happens after a sudden increase in height during adolescence? Biomed. Eng. Online. 2016;15:1–12. doi: 10.1186/s12938-016-0159-0. PubMed DOI PMC

Lamoth C.J., Van Deudekom F.J., Van Campen J.P., Appels B.A., De Vries O.J., Pijnappels M. Gait stability and variability measures show effects of impaired cognition and dual tasking in frail people. J. Neuroeng. Rehabil. 2011;8:1–9. doi: 10.1186/1743-0003-8-2. PubMed DOI PMC

Ahmadi S., Wu C., Sepehri N., Kantikar A., Nankar M., Szturm T. The effects of aging and dual tasking on human gait complexity during treadmill walking: A comparative study using quantized dynamical entropy and sample entropy. J. Biomech. Eng. 2018;140:1–10. doi: 10.1115/1.4037945. PubMed DOI

Magnani R.M., Lehnen G.C., Rodrigues F.B., de Sá ESouza G.S., de Oliveira Andrade A., Vieira M.F. Local dynamic stability and gait variability during attentional tasks in young adults. Gait Posture. 2017;55:105–108. doi: 10.1016/j.gaitpost.2017.04.019. PubMed DOI

Snijders A.H., van de Warrenburg B.P., Giladi N., Bloem B.R. Neurological gait disorders in elderly people: Clinical approach and classification. Lancet Neurol. 2007;6:63–74. doi: 10.1016/S1474-4422(06)70678-0. PubMed DOI

Srygley J.M., Mirelman A., Herman T., Giladi N., Hausdorff J.M. When does walking alter thinking? Age and task associated findings. Brain Res. 2009;1253:92–99. doi: 10.1016/j.brainres.2008.11.067. PubMed DOI PMC

Beauchet O., Allali G., Sekhon H., Verghese J., Guilain S., Steinmetz J.P., Kressig R.W., Barden J.M., Szturm T., Launay C.P., et al. Guidelines for assessment of gait and reference values for spatiotemporal gait parameters in older adults: The biomathics and canadian gait consortiums initiative. Front. Hum. Neurosci. 2017;11:353. doi: 10.3389/fnhum.2017.00353. PubMed DOI PMC

Yang L., He C., Pang M.Y.C. Reliability and validity of dual-task mobility assessments in people with chronic stroke. PLoS ONE. 2016;11:e0147833. doi: 10.1371/journal.pone.0147833. PubMed DOI PMC

Zijlstra W., Hof A.L. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture. 2003;18:1–10. doi: 10.1016/S0966-6362(02)00190-X. PubMed DOI

Costa M., Peng C.-K., Goldberger A.L., Hausdorff J.M. Multiscale entropy analysis of human gait dynamics. Phys. Stat. Mech. Appl. 2003;330:53–60. doi: 10.1016/j.physa.2003.08.022. PubMed DOI PMC

Costa M., Goldberger A.L., Peng C.-K. Multiscale entropy analysis of biological signals. Phys. Rev. Stat. Nonlinear Soft Matter. 2005;71:021906. doi: 10.1103/PhysRevE.71.021906. PubMed DOI

Costa M., Goldberger A.L., Peng C.-K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2002;89:068102. doi: 10.1103/PhysRevLett.89.068102. PubMed DOI

Goldberger A.L., Amaral L.A., Glass L., Hausdorff J.M., Ivanov P.C., Mark R.G., Mietus J.E., Moody G.B., Peng C.-K., Stanley H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation. 2000;101:E215–E220. doi: 10.1161/01.CIR.101.23.e215. PubMed DOI

Menant J.C., Steele J.R., Menz H.B., Munro B.J., Lord S.R. Effects of walking surfaces and footwear on temporo-spatial gait parameters in young and older people. Gait Posture. 2009;29:392–397. doi: 10.1016/j.gaitpost.2008.10.057. PubMed DOI

Hsieh Y., Cho C. Age-related changes of arm movements in dual task condition when walking on different surfaces. Hum. Mov. Sci. 2012;31:190–201. doi: 10.1016/j.humov.2011.01.005. PubMed DOI

Coleman T.D., Lawrence H.J., Childers W.L. Standardizing methodology for research with uneven terrains focused on dynamic balance during gait. J. Appl. Biomech. 2016;32:599–602. doi: 10.1123/jab.2016-0014. PubMed DOI

Chang M.D., Sejdic E., Wright V., Chau T. Measures of dynamic stability: Detecting differences between walking overground and on a compliant surface. Hum. Mov. Sci. 2010;29:977–986. doi: 10.1016/j.humov.2010.04.009. PubMed DOI

Patel P., Bhatt T. Task matters: Influence of different cognitive tasks on cognitive-motor interference during dual-task walking in chronic stroke survivors. Top. Stroke Rehabil. 2014;21:347–357. doi: 10.1310/tsr2104-347. PubMed DOI

Springer S., Giladi N., Peretz C., Yogev G., Simon E.S., Hausdorff J.M. Dual-tasking effects on gait variability: The role of aging, falls, and executive function. Mov. Disord. 2006;21:950–957. doi: 10.1002/mds.20848. PubMed DOI

Park G.Y., Yeo S.S., Kwon Y.C., Song H.S., Lim Y.J., Ha Y.M., Han S.H., Oh S. Changes in gait parameters and gait variability in young adults during a cognitive task while slope and flat walking. Healthcare. 2020;8:30. doi: 10.3390/healthcare8010030. PubMed DOI PMC

Priest A.W., Salamon K.B., Hollman J.H. Age-related differences in dual task walking: A cross sectional study. J. Neuroeng. Rehabil. 2008;5:1–8. doi: 10.1186/1743-0003-5-29. PubMed DOI PMC

Laessoe U., Hoeck H.C., Simonsen O., Voigt M. Residual attentional capacity amongst young and elderly during dual and triple task walking. Hum. Mov. Sci. 2008;27:496–512. doi: 10.1016/j.humov.2007.12.001. PubMed DOI

Prupetkaewa P., Lugade V., Kamnardsiri T., Silsupadol P. Cognitive and visual demands, but not gross motor demand, of concurrent smartphone use affect laboratory and free-living gait among young and older adults. Gait Posture. 2019;68:30–36. doi: 10.1016/j.gaitpost.2018.11.003. PubMed DOI

Plummer P., Apple S., Dowd C., Keith E. Texting and walking: Effect of environmental setting and task prioritization on dual-task interference in healthy young adults. Gait Posture. 2015;41:46–51. doi: 10.1016/j.gaitpost.2014.08.007. PubMed DOI

Santhiranayagam B.K., Lai D.H., Sparrow W.A., Begg R.K. Minimum toe clearance events in divided attention treadmill walking in older and young adults: A cross-sectional study. J. Neuroeng. Rehabil. 2015;12:1–9. doi: 10.1186/s12984-015-0052-2. PubMed DOI PMC

Krasovsky T., Weiss P.L., Kizony R. Older adults pay an additional cost when texting and walking: Effects of age, environment, and use of mixed reality on dual-task performance. Phys. Ther. 2018;98:549–559. doi: 10.1093/ptj/pzy047. PubMed DOI

Donelan J.M., Shipman D.W., Kram R., Kuo A.D. Mechanical and metabolic requirements for active lateral stabilization in human walking. J. Biomech. 2004;37:827–835. doi: 10.1016/j.jbiomech.2003.06.002. PubMed DOI

Bauby C.E., Kuo A.D. Active control of lateral balance in human walking. J. Biomech. 2000;33:1433–1440. doi: 10.1016/S0021-9290(00)00101-9. PubMed DOI

Schrager M.A., Kelly V.E., Price R., Ferrucci L., Shumway-Cook A. The effects of age on mediolateral stability during normal and narrow base walking. Gait Posture. 2008;28:466–471. doi: 10.1016/j.gaitpost.2008.02.009. PubMed DOI PMC

Hamacher D., Koch M., Löwe S., Zech A. Less noise during dual-task walking in healthy young adults: An analysis of different gait variability components. Exp. Brain Res. 2019;237:3185–3193. doi: 10.1007/s00221-019-05664-2. PubMed DOI

Hamacher D., Hamacher D., Müller R., Schega L., Zech A. The effect of a cognitive dual task on the control of minimum toe clearance while walking. Motor Control. 2019;23:344–353. doi: 10.1123/mc.2018-0006. PubMed DOI

Beilock S.L., Carr T.H., MacMahon C., Starkes J.L. When paying attention becomes counter productive: Impact of divided versus skill-focused attention on novice and experienced performance of sensorimotor skills. J. Exp. Psychol. Appl. 2002;8:6–16. doi: 10.1037/1076-898X.8.1.6. PubMed DOI

Beilock S.L., Gray R. From attentional control to attentional spillover: A skill-level investigation of attention, movement, and performance outcomes. Hum. Mov. Sci. 2012;31:1473–1499. doi: 10.1016/j.humov.2012.02.014. PubMed DOI

Tamburini P., Storm F., Buckley C., Bisi M.C., Stagni R., Mazzà C. Moving from laboratory to real life conditions: Influence on the assessment of variability and stability of gait. Gait Posture. 2018;59:248–252. doi: 10.1016/j.gaitpost.2017.10.024. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...