Spectroscopic Characterization of a Reactive [Cu2 (μ-OH)2 ]2+ Intermediate in Cu/TEMPO Catalyzed Aerobic Alcohol Oxidation Reaction

. 2021 Oct 11 ; 60 (42) : 23018-23024. [epub] 20210908

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34309168

CuI /TEMPO (TEMPO=2,2,6,6-tetramethylpiperidinyloxyl) catalyst systems are versatile catalysts for aerobic alcohol oxidation reactions to selectively yield aldehydes. However, several aspects of the mechanism are yet unresolved, mainly because of the lack of identification of any reactive intermediates. Herein, we report the synthesis and characterization of a dinuclear [L12 Cu2 ]2+ complex 1, which in presence of TEMPO can couple the catalytic 4 H+ /4 e- reduction of O2 to water to the oxidation of benzylic and aliphatic alcohols. The mechanisms of the O2 -reduction and alcohol oxidation reactions have been clarified by the spectroscopic detection of the reactive intermediates in the gas and condensed phases, as well as by kinetic studies on each step in the catalytic cycles. Bis(μ-oxo)dicopper(III) (2) and bis(μ-hydroxo)dicopper(II) species 3 are shown as viable reactants in oxidation catalysis. The present study provides deep mechanistic insight into the aerobic oxidation of alcohols that should serve as a valuable foundation for ongoing efforts dedicated towards the understanding of transition-metal catalysts involving redox-active organic cocatalysts.

Zobrazit více v PubMed

Solomon E. I., Heppner D. E., Johnston E. M., Ginsbach J. W., Cirera J., Qayyum M., Kieber-Emmons M. T., Kjaergaard C. H., Hadt R. G., Tian L., Chem. Rev. 2014, 114, 3659–3853; PubMed PMC

Elwell C. E., Gagnon N. L., Neisen B. D., Dhar D., Spaeth A. D., Yee G. M., Tolman W. B., Chem. Rev. 2017, 117, 2059–2107; PubMed PMC

Quist D. A., Diaz D. E., Liu J. J., Karlin K. D., J. Biol. Inorg. Chem. 2017, 22, 253–288. PubMed PMC

Trammell R., Rajabimoghadam K., Garcia-Bosch I., Chem. Rev. 2019, 119, 2954–3031. PubMed PMC

Donoghue P. J., Tehranchi J., Cramer C. J., Sarangi R., Solomon E. I., Tolman W. B., J. Am. Chem. Soc. 2011, 133, 17602–17605; PubMed PMC

Gagnon N., Tolman W. B., Acc. Chem. Res. 2015, 48, 2126–2131. PubMed PMC

Mahapatra S., Halfen J. A., Wilkinson E. C., Pan G., Wang X., Young V. G., Cramer C. J., Que L., Tolman W. B., J. Am. Chem. Soc. 1996, 118, 11555–11574;

Ruiz E., Alemany P., Alvarez S., Cano J., J. Am. Chem. Soc. 1997, 119, 1297–1303;

Obias H. V., Lin Y., Murthy N. N., Pidcock E., Solomon E. I., Ralle M., Blackburn N. J., Neuhold Y.-M., Zuberbühler A. D., Karlin K. D., J. Am. Chem. Soc. 1998, 120, 12960–12961;

Haase R., Beschnitt T., Flörke U., Herres-Pawlis S., Inorg. Chim. Acta 2011, 374, 546–557;

Halvagar M. R., Solntsev P. V., Lim H., Hedman B., Hodgson K. O., Solomon E. I., Cramer C. J., Tolman W. B., J. Am. Chem. Soc. 2014, 136, 7269–7272; PubMed PMC

Kitajima N., Koda T., Hashimoto S., Kitagawa T., Morooka Y., J. Am. Chem. Soc. 1991, 113, 5664–5671;

Herres S., Florke U., Henkel G., Acta Crystallogr. Sect. C 2004, 60, m659–m660. PubMed

Hoover J. M., Ryland B. L., Stahl S. S., ACS Catal. 2013, 3, 2599–2605; PubMed PMC

Kumpulainen E. T. T., Koskinen A. M. P., Chem. Eur. J. 2009, 15, 10901–10911. PubMed

Hoover J. M., Stahl S. S., J. Am. Chem. Soc. 2011, 133, 16901–16910; PubMed PMC

Hoover J. M., Ryland B. L., Stahl S. S., J. Am. Chem. Soc. 2013, 135, 2357–2367; PubMed PMC

Ryland B. L., Stahl S. S., Angew. Chem. Int. Ed. 2014, 53, 8824–8838; PubMed PMC

Angew. Chem. 2014, 126, 8968–8983;

Steves J. E., Stahl S. S., J. Am. Chem. Soc. 2013, 135, 15742–15745; PubMed PMC

Hoover J. M., Steves J. E., Stahl S. S., Nat. Protoc. 2012, 7, 1161–1166. PubMed PMC

Daou M., Faulds C. B., World J. Microbiol. Biotechnol. 2017, 33, 87; PubMed

Whittaker J. W., Arch. Biochem. Biophys. 2005, 433, 227–239. PubMed

Wang D., Weinstein A. B., White P. B., Stahl S. S., Chem. Rev. 2018, 118, 2636–2679; PubMed

Citek C., Herres-Pawlis S., Stack T. D. P., Acc. Chem. Res. 2015, 48, 2424–2433; PubMed

Mirica L. M., Ottenwaelder X., Stack T. D. P., Chem. Rev. 2004, 104, 1013–1046. PubMed

Roithová J., Gray A., Andris E., Jašík J., Gerlich D., Acc. Chem. Res. 2016, 49, 223–230; PubMed

Gerlich D., J. Chin. Chem. Soc. 2018, 65, 637–653.

For reviews about photodissociation spectroscopy see:

Jašíková L., Roithová J., Chem. Eur. J. 2018, 24, 3374–3390; PubMed

Schwarz H., Asmis K. R., Chem. Eur. J. 2019, 25, 2112–2126; PubMed

Maitre P., Scuderi D., Corinti D., Chiavarino B., Crestoni M. E., Fornarini S., Chem. Rev. 2020, 120, 3261–3295. For the use of helium tagging IRPD spectroscopy for characterization of reactive metal complexes see: PubMed

Andris E., Navrátil R., Jašík J., Puri M., Costas M., L. Que, Jr. , Roithová J., J. Am. Chem. Soc. 2018, 140, 14391–14400; PubMed

Andris E., Navrátil R., Jašík J., Terencio T., Srnec M., Costas M., Roithová J., J. Am. Chem. Soc. 2017, 139, 2757–2765. PubMed

Kau L. S., Spira-Solomon D. J., Penner-Hahn J. E., Hodgson K. O., Solomon E. I., J. Am. Chem. Soc. 1987, 109, 6433–6442.

Mehara J., Roithová J., Chem. Sci. 2020, 11, 11960–11972. PubMed PMC

Tripodi G. L., Dekker M. M. J., Roithová J., L. Que, Jr. , Angew. Chem. Int. Ed. 2021, 60, 7126–7131; PubMed PMC

Angew. Chem. 2021, 133, 7202–7207.

Ray K., Heims F., Schwalbe M., Nam W., Curr. Opin. Chem. Biol. 2015, 25, 159–171; PubMed

Chen Z., Higgins D., Yu A., Zhang L., Zhang J., Energy Environ. Sci. 2011, 4, 3167–3192.

The formation of hydrogen peroxide was excluded as its presence could neither be probed by iodometric titration nor by reaction with titanium oxysulfate. H2O2 is also found to be stable against disproportionation under catalytic turnover conditions (see Figure S20).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...