Spectroscopic Characterization of a Reactive [Cu2 (μ-OH)2 ]2+ Intermediate in Cu/TEMPO Catalyzed Aerobic Alcohol Oxidation Reaction
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34309168
PubMed Central
PMC8518518
DOI
10.1002/anie.202108442
Knihovny.cz E-zdroje
- Klíčová slova
- alcohol oxidation, copper, dioxygen reduction, reactive intermediates, stopped-flow kinetics,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
CuI /TEMPO (TEMPO=2,2,6,6-tetramethylpiperidinyloxyl) catalyst systems are versatile catalysts for aerobic alcohol oxidation reactions to selectively yield aldehydes. However, several aspects of the mechanism are yet unresolved, mainly because of the lack of identification of any reactive intermediates. Herein, we report the synthesis and characterization of a dinuclear [L12 Cu2 ]2+ complex 1, which in presence of TEMPO can couple the catalytic 4 H+ /4 e- reduction of O2 to water to the oxidation of benzylic and aliphatic alcohols. The mechanisms of the O2 -reduction and alcohol oxidation reactions have been clarified by the spectroscopic detection of the reactive intermediates in the gas and condensed phases, as well as by kinetic studies on each step in the catalytic cycles. Bis(μ-oxo)dicopper(III) (2) and bis(μ-hydroxo)dicopper(II) species 3 are shown as viable reactants in oxidation catalysis. The present study provides deep mechanistic insight into the aerobic oxidation of alcohols that should serve as a valuable foundation for ongoing efforts dedicated towards the understanding of transition-metal catalysts involving redox-active organic cocatalysts.
Institut für Chemie Humboldt Universität zu Berlin Brook Taylor Straße 2 12489 Berlin Germany
Institut für Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
Radboud University Heyendaalseweg 135 6525 AJ Nijmegen Netherlands
Zobrazit více v PubMed
Solomon E. I., Heppner D. E., Johnston E. M., Ginsbach J. W., Cirera J., Qayyum M., Kieber-Emmons M. T., Kjaergaard C. H., Hadt R. G., Tian L., Chem. Rev. 2014, 114, 3659–3853; PubMed PMC
Elwell C. E., Gagnon N. L., Neisen B. D., Dhar D., Spaeth A. D., Yee G. M., Tolman W. B., Chem. Rev. 2017, 117, 2059–2107; PubMed PMC
Quist D. A., Diaz D. E., Liu J. J., Karlin K. D., J. Biol. Inorg. Chem. 2017, 22, 253–288. PubMed PMC
Trammell R., Rajabimoghadam K., Garcia-Bosch I., Chem. Rev. 2019, 119, 2954–3031. PubMed PMC
Donoghue P. J., Tehranchi J., Cramer C. J., Sarangi R., Solomon E. I., Tolman W. B., J. Am. Chem. Soc. 2011, 133, 17602–17605; PubMed PMC
Gagnon N., Tolman W. B., Acc. Chem. Res. 2015, 48, 2126–2131. PubMed PMC
Mahapatra S., Halfen J. A., Wilkinson E. C., Pan G., Wang X., Young V. G., Cramer C. J., Que L., Tolman W. B., J. Am. Chem. Soc. 1996, 118, 11555–11574;
Ruiz E., Alemany P., Alvarez S., Cano J., J. Am. Chem. Soc. 1997, 119, 1297–1303;
Obias H. V., Lin Y., Murthy N. N., Pidcock E., Solomon E. I., Ralle M., Blackburn N. J., Neuhold Y.-M., Zuberbühler A. D., Karlin K. D., J. Am. Chem. Soc. 1998, 120, 12960–12961;
Haase R., Beschnitt T., Flörke U., Herres-Pawlis S., Inorg. Chim. Acta 2011, 374, 546–557;
Halvagar M. R., Solntsev P. V., Lim H., Hedman B., Hodgson K. O., Solomon E. I., Cramer C. J., Tolman W. B., J. Am. Chem. Soc. 2014, 136, 7269–7272; PubMed PMC
Kitajima N., Koda T., Hashimoto S., Kitagawa T., Morooka Y., J. Am. Chem. Soc. 1991, 113, 5664–5671;
Herres S., Florke U., Henkel G., Acta Crystallogr. Sect. C 2004, 60, m659–m660. PubMed
Hoover J. M., Ryland B. L., Stahl S. S., ACS Catal. 2013, 3, 2599–2605; PubMed PMC
Kumpulainen E. T. T., Koskinen A. M. P., Chem. Eur. J. 2009, 15, 10901–10911. PubMed
Hoover J. M., Stahl S. S., J. Am. Chem. Soc. 2011, 133, 16901–16910; PubMed PMC
Hoover J. M., Ryland B. L., Stahl S. S., J. Am. Chem. Soc. 2013, 135, 2357–2367; PubMed PMC
Ryland B. L., Stahl S. S., Angew. Chem. Int. Ed. 2014, 53, 8824–8838; PubMed PMC
Angew. Chem. 2014, 126, 8968–8983;
Steves J. E., Stahl S. S., J. Am. Chem. Soc. 2013, 135, 15742–15745; PubMed PMC
Hoover J. M., Steves J. E., Stahl S. S., Nat. Protoc. 2012, 7, 1161–1166. PubMed PMC
Daou M., Faulds C. B., World J. Microbiol. Biotechnol. 2017, 33, 87; PubMed
Whittaker J. W., Arch. Biochem. Biophys. 2005, 433, 227–239. PubMed
Wang D., Weinstein A. B., White P. B., Stahl S. S., Chem. Rev. 2018, 118, 2636–2679; PubMed
Citek C., Herres-Pawlis S., Stack T. D. P., Acc. Chem. Res. 2015, 48, 2424–2433; PubMed
Mirica L. M., Ottenwaelder X., Stack T. D. P., Chem. Rev. 2004, 104, 1013–1046. PubMed
Roithová J., Gray A., Andris E., Jašík J., Gerlich D., Acc. Chem. Res. 2016, 49, 223–230; PubMed
Gerlich D., J. Chin. Chem. Soc. 2018, 65, 637–653.
For reviews about photodissociation spectroscopy see:
Jašíková L., Roithová J., Chem. Eur. J. 2018, 24, 3374–3390; PubMed
Schwarz H., Asmis K. R., Chem. Eur. J. 2019, 25, 2112–2126; PubMed
Maitre P., Scuderi D., Corinti D., Chiavarino B., Crestoni M. E., Fornarini S., Chem. Rev. 2020, 120, 3261–3295. For the use of helium tagging IRPD spectroscopy for characterization of reactive metal complexes see: PubMed
Andris E., Navrátil R., Jašík J., Puri M., Costas M., L. Que, Jr. , Roithová J., J. Am. Chem. Soc. 2018, 140, 14391–14400; PubMed
Andris E., Navrátil R., Jašík J., Terencio T., Srnec M., Costas M., Roithová J., J. Am. Chem. Soc. 2017, 139, 2757–2765. PubMed
Kau L. S., Spira-Solomon D. J., Penner-Hahn J. E., Hodgson K. O., Solomon E. I., J. Am. Chem. Soc. 1987, 109, 6433–6442.
Mehara J., Roithová J., Chem. Sci. 2020, 11, 11960–11972. PubMed PMC
Tripodi G. L., Dekker M. M. J., Roithová J., L. Que, Jr. , Angew. Chem. Int. Ed. 2021, 60, 7126–7131; PubMed PMC
Angew. Chem. 2021, 133, 7202–7207.
Ray K., Heims F., Schwalbe M., Nam W., Curr. Opin. Chem. Biol. 2015, 25, 159–171; PubMed
Chen Z., Higgins D., Yu A., Zhang L., Zhang J., Energy Environ. Sci. 2011, 4, 3167–3192.
The formation of hydrogen peroxide was excluded as its presence could neither be probed by iodometric titration nor by reaction with titanium oxysulfate. H2O2 is also found to be stable against disproportionation under catalytic turnover conditions (see Figure S20).