Extracellular volume quantification using synthetic haematocrit assessed from native and post-contrast longitudinal relaxation T1 times of a blood pool
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34330214
PubMed Central
PMC8325220
DOI
10.1186/s12872-021-02179-z
PII: 10.1186/s12872-021-02179-z
Knihovny.cz E-resources
- Keywords
- CMR, Cardiovascular magnetic resonance, ECV, Extracellular volume, Synthetic haematocrit,
- MeSH
- Hematocrit * MeSH
- Contrast Media * MeSH
- Humans MeSH
- Magnetic Resonance Imaging * MeSH
- Myocardium pathology MeSH
- Heart Diseases blood diagnostic imaging MeSH
- Organometallic Compounds * MeSH
- Predictive Value of Tests MeSH
- Retrospective Studies MeSH
- Feasibility Studies MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- gadobutrol MeSH Browser
- Contrast Media * MeSH
- Organometallic Compounds * MeSH
BACKGROUND: In terms of cardiovascular magnetic resonance are haematocrit values required for calculation of extracellular volume fraction (ECV). Previously published studies have hypothesized that haematocrit could be calculated from T1 blood pool relaxation time, however only native T1 relaxation time values have been used and the resulting formulae had been both in reciprocal and linear proportion. The aim of the study was to generate a synthetic haematocrit formula from only native relaxation time values first, calculate whether linear or reciprocal model is more precise in haematocrit estimation and then determine whether adding post-contrast values further improve its precision. METHODS: One hundred thirty-nine subjects underwent CMR examination. Haematocrit was measured using standard laboratory methods. Afterwards T1 relaxation times before and after the application of a contrast agent were measured and a statistical relationship between these values was calculated. RESULTS: Different linear and reciprocal models were created to estimate the value of synthetic haematocrit and ECV. The highest coefficient of determination was observed in the combined reciprocal model "- 0.047 + (779/ blood native) - (11.36/ blood post-contrast)". CONCLUSIONS: This study provides more evidence that assessing synthetic haematocrit and synthetic ECV is feasible and statistically most accurate model to use is reciprocal. Adding post-contrast values to the calculation was proved to improve the precision of the formula statistically significantly.
Department of Medical Imaging St Anne's University Hospital Brno Czech Republic
Department of Pathophysiology Faculty of Medicine Masaryk University Brno Czech Republic
Faculty of Medicine Masaryk University Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
See more in PubMed
Pennell DJ. Cardiovascular magnetic resonance: twenty-first century solutions in cardiology. Clin Med. 2003;3(3):273–278. doi: 10.7861/clinmedicine.3-3-273. PubMed DOI PMC
Ugander M, Oki AJ, Hsu L-Y, Kellman P, Greiser A, Aletras AH, Sibley CT, et al. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J. 2012;33(10):1268–1278. doi: 10.1093/eurheartj/ehr481. PubMed DOI PMC
Kammerlander AA, Duca F, Binder C, Aschauer S, Zotter-Tufaro C, Koschutnik M, et al. Extracellular volume quantification by cardiac magnetic resonance imaging without hematocrit sampling. Wien Klin Wochenschr. 2018;130(5):190–196. doi: 10.1007/s00508-017-1267-y. PubMed DOI PMC
Raucci FJ, Parra DA, Christensen JT, Hernandez LE, Markham LW, Xu M, Slaughter JC, Soslow JH. Synthetic hematocrit derived from the longitudinal relaxation of blood can lead to clinically significant errors in measurement of extracellular volume fraction in pediatric and young adult patients. J Cardiovasc Magn Reson. 2017;19(1):58. doi: 10.1186/s12968-017-0377-z. PubMed DOI PMC
Puntmann VO, Voigt T, Chen Z, Mayr M, Karim R, Rhode K, et al. Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging. 2013;6(4):475–484. doi: 10.1016/j.jcmg.2012.08.019. PubMed DOI
Soslow JH, Damon SM, Crum K, Lawson MA, Slaughter JC, Xu M, et al. Increased myocardial native T1 and extracellular volume in patients with Duchenne muscular dystrophy. J Cardiovasc Magn Reson. 2016;18:1–13. doi: 10.1186/s12968-016-0224-7. PubMed DOI PMC
Soslow JH, Damon BM, Saville BR, Lu Z, Burnette B, Lawson MA, et al. Evaluation of post-contrast myocardial t1 in duchenne muscular dystrophy using cardiac magnetic resonance imaging. Pediatr Cardiol. 2015;36(1):49–56. doi: 10.1007/s00246-014-0963-x. PubMed DOI PMC
Piechnik SK, Ferreira VM, Lewandowski AJ, Ntusi NAB, Banerjee R, Holloway C, et al. Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI. J Cardiovasc Magn Reson. 2013;15:13. doi: 10.1186/1532-429X-15-13. PubMed DOI PMC
Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15:92. doi: 10.1186/1532-429X-15-92. PubMed DOI PMC
Wong TC, Piehler K, Meier CG, Testa SM, Klock AM, Aneizi AA, et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation. 2012;126(10):1206–1216. doi: 10.1161/CIRCULATIONAHA.111.089409. PubMed DOI PMC
Wong TC, Piehler KM, Kang IA, Kadakkai A, Kellman P, Schwartzman DS, Mulukutla SR, et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J. 2014;35(10):657–664. doi: 10.1093/eurheartj/eht193. PubMed DOI PMC
Sado DM, Flett AS, Banypersad SM, White SK, Maestrini V, Quarta G, et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart. 2012;98(19):1436–1441. doi: 10.1136/heartjnl-2012-302346. PubMed DOI
Fontana M, White SK, Banypersad SM, Sado DM, Maestrini V, Flett AS, et al. Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quantification equilibrium contrast CMR. J Cardiovasc Magn Reson. 2012;14:88. doi: 10.1186/1532-429X-14-88. PubMed DOI PMC
Park SJ, Cho SW, Kim SM, Ahn J, Carriere K, Jeong DS, et al. Assessment of myocardial fibrosis using multimodality imaging in severe aortic stenosis: comparison with histologic fibrosis. JACC Cardiovasc Imaging. 2019;12(1):109–119. doi: 10.1016/j.jcmg.2018.05.028. PubMed DOI
Treibel TA, Nasis A, Fontana M, Maestrini V, Castelletti S, Bhuva AN, et al. An instantaneous ECV with no blood sampling: using native blood T1 for hematocrit is as good as standard ECV. J Cardiovasc Magn Reson. 2015;17(1):Q129. doi: 10.1186/1532-429X-17-S1-Q129. DOI
Robison S, Karur GR, Wald RM, Thavendiranathan P, Crean AM, Hanneman K. Noninvasive hematocrit assessment for cardiovascular magnetic resonance extracellular volume quantification using a point-of-care device and synthetic derivation. J Cardiovasc Magn Reson. 2018;20(1):19. doi: 10.1186/s12968-018-0443-1. PubMed DOI PMC
Treibel TA, Fontana M, Maestrini V, Castelletti S, Rosmini S, Simpson J, et al. Automatic measurement of the myocardial interstitium: synthetic extracellular volume quantification without hematocrit sampling. JACC Cardiovasc Imaging. 2016;9(1):54–63. doi: 10.1016/j.jcmg.2015.11.008. PubMed DOI
Treibel T, Fontana M, Maestrini V, Castelletti S, Rosmini S, Simpson J, et al. Synthetic ECV—simplifying ECV quantification by deriving haematocrit from T1 blood. Heart. 2015;101:A16–A17. doi: 10.1136/heartjnl-2015-307845.29. DOI
Lee Y, Callaghan MF, Acosta-Cabronero J, Lutti A, Nagy Z. Establishing intra- and inter-vendor reproducibility of T1 relaxation time measurements with 3T MRI. Magn Reson Med. 2019;81(1):454–465. doi: 10.1002/mrm.27421. PubMed DOI
Raman FS, Kawel-Boehm N, Gai N, Freed M, Han J, Liu CY, et al. Modified look-locker inversion recovery T1 mapping indices: assessment of accuracy and reproducibility between magnetic resonance scanners. J Cardiovasc Magn Reson. 2013;15:64. doi: 10.1186/1532-429X-15-64. PubMed DOI PMC
Free Statistics Calculators—Home. https://www.danielsoper.com/statcalc/default.aspx. Accessed 17 Oct 2019.
Panovský R, Pešl M, Holeček T, Máchal J, Feitová V, Mrázová L, et al. Cardiac profile of the Czech population of Duchenne muscular dystrophy patients: a cardiovascular magnetic resonance study with T1 mapping. Orphanet J Rare Dis. 2019;14(1):10. doi: 10.1186/s13023-018-0986-0. PubMed DOI PMC
Czock D. Pharmakokinetik von gadoliniumhaltigen Kontrastmitteln. Radiologe. 2019;59:408–412. doi: 10.1007/s00117-019-0496-7. PubMed DOI