Mechanical metric for skeletal biomechanics derived from spectral analysis of stiffness matrix

. 2021 Aug 03 ; 11 (1) : 15690. [epub] 20210803

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34344907
Odkazy

PubMed 34344907
PubMed Central PMC8333423
DOI 10.1038/s41598-021-94998-5
PII: 10.1038/s41598-021-94998-5
Knihovny.cz E-zdroje

A new metric for the quantitative and qualitative evaluation of bone stiffness is introduced. It is based on the spectral decomposition of stiffness matrix computed with finite element method. The here proposed metric is defined as an amplitude rescaled eigenvalues of stiffness matrix. The metric contains unique information on the principal stiffness of bone and reflects both bone shape and material properties. The metric was compared with anthropometrical measures and was tested for sex sensitivity on pelvis bone. Further, the smallest stiffness of pelvis was computed under a certain loading condition and analyzed with respect to sex and direction. The metric complements anthropometrical measures and provides a unique information about the smallest bone stiffness independent from the loading configuration and can be easily computed by state-of-the-art subject specified finite element algorithms.

Zobrazit více v PubMed

Schlecht SH, Bigelow EM, Jepsen KJ. Mapping the natural variation in whole bone stiffness and strength across skeletal sites. Bone. 2014;67:15–22. doi: 10.1016/j.bone.2014.06.031. PubMed DOI PMC

Voide R, van Lenthe GH, Müller R. Bone morphometry strongly predicts cortical bone stiffness and strength, but not toughness, in inbred mouse models of high and low bone mass. J. Bone Miner. Res. 2008;23:1194–1203. doi: 10.1359/jbmr.080311. PubMed DOI

Bowman L, Ellerbrock ER, Hausfeld GC, Neumeyer JM, Loucks AB. A new noninvasive mechanical bending test accurately predicts ulna bending strength in cadaveric human arms. Bone. 2019;120:336–346. doi: 10.1016/j.bone.2018.11.018. PubMed DOI

Fyhrie DP, Vashishth D. Bone stiffness predicts strength similarly for human vertebral cancellous bone in compression and for cortical bone in tension. Bone. 2000;26:169–173. doi: 10.1016/S8756-3282(99)00246-X. PubMed DOI

Zhu TY, et al. Value of measuring bone microarchitecture in fracture discrimination in older women with recent hip fracture: A case-control study with HR-pQCT. Sci. Rep. 2016;6:34185. doi: 10.1038/srep34185. PubMed DOI PMC

Mattei L, Longo A, Di Puccio F, Ciulli E, Marchetti S. Vibration testing procedures for bone stiffness assessment in fractures treated with external fixation. Ann. Biomed. Eng. 2017;45:1111–1121. doi: 10.1007/s10439-016-1769-1. PubMed DOI

Kumasaka S, et al. Relationship between bone mineral density and bone stiffness in bone fracture. Oral Radiol. 2005;21:38–40. doi: 10.1007/s11282-005-0028-1. DOI

Luo Y, Yang H. Comparison of femur stiffness measured from DXA and QCT for assessment of hip fracture risk. J. Bone Miner. Metab. 2019;37:342–350. doi: 10.1007/s00774-018-0926-z. PubMed DOI

Heyer F, et al. Long-term functional outcome of distal radius fractures is associated with early post-fracture bone stiffness of the fracture region: An HR-pQCT exploratory study. Bone. 2019;127:510–516. doi: 10.1016/j.bone.2019.06.013. PubMed DOI

Schlecht SH, Jepsen KJ. Functional integration of skeletal traits: An intraskeletal assessment of bone size, mineralization, and volume covariance. Bone. 2013;56:127–138. doi: 10.1016/j.bone.2013.05.012. PubMed DOI PMC

Laing AC, Robinovitch SN. Characterizing the effective stiffness of the pelvis during sideways falls on the hip. J. Biomech. 2010;43:1898–1904. doi: 10.1016/j.jbiomech.2010.03.025. PubMed DOI

Rezaei A, et al. Are DXA/aBMD and QCT/FEA stiffness and strength estimates sensitive to sex and age? Ann. Biomed. Eng. 2017;45:2847–2856. doi: 10.1007/s10439-017-1914-5. PubMed DOI PMC

Patton DM, et al. The relationship between whole bone stiffness and strength is age and sex dependent. J. Biomech. 2019;83:125–133. doi: 10.1016/j.jbiomech.2018.11.030. PubMed DOI PMC

Levine IC, Bhan S, Laing AC. The effects of body mass index and sex on impact force and effective pelvic stiffness during simulated lateral falls. Clin. Biomech. 2013;28:1026–1033. doi: 10.1016/j.clinbiomech.2013.10.002. PubMed DOI

Ward J, Wood C, Rouch K, Pienkowski D, Malluche H. Stiffness and strength of bone in osteoporotic patients treated with varying durations of oral bisphosphonates. Osteoporos. Int. 2016;27:2681–2688. doi: 10.1007/s00198-016-3661-0. PubMed DOI

Barak MM, Black MA. A novel use of 3D printing model demonstrates the effects of deteriorated trabecular bone structure on bone stiffness and strength. J. Mech. Behav. Biomed. Mater. 2018;78:455–464. doi: 10.1016/j.jmbbm.2017.12.010. PubMed DOI PMC

Collins CJ, Boyer M, Crenshaw TD, Ploeg H-L. Design of a surrogate for evaluation of methods to predict bone bending stiffness. J. Mech. Behav. Biomed. Mater. 2018;88:346–351. doi: 10.1016/j.jmbbm.2018.08.046. PubMed DOI

Arjmand H, et al. Mechanical metrics of the proximal tibia are precise and differentiate osteoarthritic and normal knees: A finite element study. Sci. Rep. 2018;8:11478. doi: 10.1038/s41598-018-29880-y. PubMed DOI PMC

Liu XS, et al. Bone density, geometry, microstructure, and stiffness: Relationships between peripheral and central skeletal sites assessed by DXA, HR-pQCT, and cQCT in premenopausal women. J. Bone Miner. Res. 2010;25:2229–2238. doi: 10.1002/jbmr.111. PubMed DOI PMC

Knowles NK, Kusins J, Columbus MP, Athwal GS, Ferreira LM. Morphological and apparent-level stiffness variations between normal and osteoarthritic bone in the humeral head. J. Orthopaed. Res. 2019;38:503–509. doi: 10.1002/jor.24482. PubMed DOI

Henyš P, Sutula D, Kopal J, Kuchař M, Čapek L. Localising the smallest stiffness and its direction of a homogeneous structure by spectral and optimisation approaches. Eng. Struct. 2021;232:111842. doi: 10.1016/j.engstruct.2020.111842. DOI

Reuter M, Wolter F-E, Shenton M, Niethammer M. Laplace–Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis. Comput. Aided Des. 2009;41:739–755. doi: 10.1016/j.cad.2009.02.007. PubMed DOI PMC

Chaudhari AJ, et al. Global point signature for shape analysis of carpal bones. Phys. Med. Biol. 2014;59:961. doi: 10.1088/0031-9155/59/4/961. PubMed DOI PMC

Venkadesan M, et al. Stiffness of the human foot and evolution of the transverse arch. Nature. 2020;579:97–100. doi: 10.1038/s41586-020-2053-y. PubMed DOI

Hong AL, et al. MRI-derived bone porosity index correlates to bone composition and mechanical stiffness. Bone Rep. 2019;11:100213. doi: 10.1016/j.bonr.2019.100213. PubMed DOI PMC

Cosman MN, Britz HM, Rolian C. Selection for longer limbs in mice increases bone stiffness and brittleness, but does not alter bending strength. J. Exp. Biol. 2019;222:jeb203125. doi: 10.1242/jeb.203125. PubMed DOI

Barry JJ, Sing DC, Vail TP, Hansen EN. Early outcomes of primary total hip arthroplasty after prior lumbar spinal fusion. J. Arthroplasty. 2017;32:470–474. doi: 10.1016/j.arth.2016.07.019. PubMed DOI

Staibano P, Winemaker M, Petruccelli D, de Beer J. Total joint arthroplasty and preoperative low back pain. J. Arthroplasty. 2014;29:867–871. doi: 10.1016/j.arth.2013.10.001. PubMed DOI

Weinberg D, Gebhart J, Liu R. Hip-spine syndrome: A cadaveric analysis between osteoarthritis of the lumbar spine and hip joints. Orthopaed. Traumatol. Surg. Res. 2017;103:651–656. doi: 10.1016/j.otsr.2017.05.010. PubMed DOI

Devin CJ, McCullough KA, Morris BJ, Yates AJ, Kang JD. Hip-spine syndrome. JAAOS J. Am. Acad. Orthopaed. Surg. 2012;20:434–442. doi: 10.5435/JAAOS-20-07-434. PubMed DOI

Kuchař M, Henyš P, Rejtar P, Hájek P. Shape morphing technique can accurately predict pelvic bone landmarks. Int. J. Legal Med. 2021;135:1–10. doi: 10.1007/s00414-021-02501-6. PubMed DOI

Wahyuni, E. & Ji, T. J. T. Relationship between static stiffness and modal stiffness of structures. IPTEK J. Technol. Sci.21, 1-5 (2010).

Henyš P, Čapek L. Material model of pelvic bone based on modal analysis: A study on the composite bone. Biomech. Model. Mechanobiol. 2017;16:363–373. doi: 10.1007/s10237-016-0822-1. PubMed DOI

Neugebauer R, et al. Experimental modal analysis on fresh-frozen human hemipelvic bones employing a 3D laser vibrometer for the purpose of modal parameter identification. J. Biomech. 2011;44:1610–1613. doi: 10.1016/j.jbiomech.2011.03.005. PubMed DOI

Conza N, Rixen D, Plomp S. Vibration testing of a fresh-frozen human pelvis: The role of the pelvic ligaments. J. Biomech. 2007;40:1599–1605. doi: 10.1016/j.jbiomech.2006.07.001. PubMed DOI

Scholz R, et al. Validation of density–elasticity relationships for finite element modeling of human pelvic bone by modal analysis. J. Biomech. 2013;46:2667–2673. doi: 10.1016/j.jbiomech.2013.07.045. PubMed DOI

Allemang RJ. The modal assurance criterion—Twenty years of use and abuse. Sound Vib. 2003;37:14–23.

Michalski AS, Besler BA, Michalak GJ, Boyd SK. CT-based internal density calibration for opportunistic skeletal assessment using abdominal CT scans. Med. Eng. Phys. 2020;78:55–63. doi: 10.1016/j.medengphy.2020.01.009. PubMed DOI

Blanchard R, Dejaco A, Bongaers E, Hellmich C. Intravoxel bone micromechanics for microCT-based finite element simulations. J. Biomech. 2013;46:2710–2721. doi: 10.1016/j.jbiomech.2013.06.036. PubMed DOI

Hellmich C, Kober C, Erdmann B. Micromechanics-based conversion of CT data into anisotropic elasticity tensors, applied to FE simulations of a mandible. Ann. Biomed. Eng. 2008;36:108. doi: 10.1007/s10439-007-9393-8. PubMed DOI

Blanchard R, et al. Patient-specific fracture risk assessment of vertebrae: A multiscale approach coupling X-ray physics and continuum micromechanics. Int. J. Numer. Methods Biomed. Eng. 2016;32:e02760. doi: 10.1002/cnm.2760. PubMed DOI

Schneider R, Faust G, Hindenlang U, Helwig P. Inhomogeneous, orthotropic material model for the cortical structure of long bones modelled on the basis of clinical CT or density data. Comput. Methods Appl. Mech. Eng. 2009;198:2167–2174. doi: 10.1016/j.cma.2009.02.010. DOI

Vukicevic AM, et al. Openmandible: An open-source framework for highly realistic numerical modelling of lower mandible physiology. Dental Mater. 2021;37:612–624. doi: 10.1016/j.dental.2021.01.009. PubMed DOI

Kober C, Erdmann B, Hellmich C, Sader R, Zeilhofer H-F. Consideration of anisotropic elasticity minimizes volumetric rather than shear deformation in human mandible. Comput. Methods Biomech. Biomed. Eng. 2006;9:91–101. doi: 10.1080/10255840600661482. PubMed DOI

Pauchard Y, et al. Interactive graph-cut segmentation for fast creation of finite element models from clinical CT data for hip fracture prediction. Comput. Methods Biomech. Biomed. Eng. 2016;19:1693–1703. doi: 10.1080/10255842.2016.1181173. PubMed DOI PMC

Helgason B, et al. The influence of the modulus–density relationship and the material mapping method on the simulated mechanical response of the proximal femur in side-ways fall loading configuration. Med. Eng. Phys. 2016;38:679–689. doi: 10.1016/j.medengphy.2016.03.006. PubMed DOI

Schroeder WJ, Lorensen B, Martin K. The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics. Kitware; 2004.

Hu Y, et al. Tetrahedral meshing in the wild. ACM Trans. Graph. 2018;37:60–1.

Taylor W, et al. Determination of orthotropic bone elastic constants using FEA and modal analysis. J. Biomech. 2002;35:767–773. doi: 10.1016/S0021-9290(02)00022-2. PubMed DOI

Keller TS. Predicting the compressive mechanical behavior of bone. J. Biomech. 1994;27:1159–1168. doi: 10.1016/0021-9290(94)90056-6. PubMed DOI

Keyak J, Lee I, Skinner H. Correlations between orthogonal mechanical properties and density of trabecular bone: Use of different densitometric measures. J. Biomed. Mater. Res. 1994;28:1329–1336. doi: 10.1002/jbm.820281111. PubMed DOI

Dahan G, Trabelsi N, Safran O, Yosibash Z. Finite element analyses for predicting anatomical neck fractures in the proximal humerus. Clin. Biomech. 2019;68:114–121. doi: 10.1016/j.clinbiomech.2019.05.028. PubMed DOI

Watson PJ, Dostanpor A, Fagan MJ, Dobson CA. The effect of boundary constraints on finite element modelling of the human pelvis. Med. Eng. Phys. 2017;43:48–57. doi: 10.1016/j.medengphy.2017.02.001. PubMed DOI

Logg A, Mardal K-A, Wells G. Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book. Springer; 2012.

Zienkiewicz OC, Taylor RL, Zhu JZ. The Finite Element Method: Its Basis and Fundamentals. Elsevier; 2005.

Hernandez V, Roman JE, Vidal V. Slepc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. (TOMS) 2005;31:351–362. doi: 10.1145/1089014.1089019. DOI

Brąžek J, Santos F, Dutailly B, Murail P, Cunha E. Validation and reliability of the sex estimation of the human os coxae using freely available DSP2 software for bioarchaeology and forensic anthropology. Am. J. Phys. Anthropol. 2017;164:440–449. doi: 10.1002/ajpa.23282. PubMed DOI

Chandran V, Reyes M, Zysset P. A novel registration-based methodology for prediction of trabecular bone fabric from clinical QCT: A comprehensive analysis. PLoS ONE. 2017;12:e0187874. doi: 10.1371/journal.pone.0187874. PubMed DOI PMC

Avants BB, et al. A reproducible evaluation of ants similarity metric performance in brain image registration. Neuroimage. 2011;54:2033–2044. doi: 10.1016/j.neuroimage.2010.09.025. PubMed DOI PMC

Pedregosa F, et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011;12:2825–2830.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...