Contrasting effects of maize residue, coal gas residue and their biochars on nutrient mineralization, enzyme activities and CO2 emissions in sandy loess soil
Status PubMed-not-MEDLINE Jazyk angličtina Země Saúdská Arábie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34354395
PubMed Central
PMC8324933
DOI
10.1016/j.sjbs.2021.04.074
PII: S1319-562X(21)00333-8
Knihovny.cz E-zdroje
- Klíčová slova
- Biochar, CO2 emissions, Soil MBC and MBN, Soil enzymes activities,
- Publikační typ
- časopisecké články MeSH
Mismanagement of crop straw and coal gas residue threatens the atmosphere and the economy. Nevertheless, thermal-pyrolysis is an option for management that turns bio-waste into biochar; its viability and adoption by the public as soil amendments is dependent on the agronomic and environmental values compared between biochar and the raw materials. We undertook a 60-day short-term analysis to assess the impact of various wastes and biochars, as well as inorganic nutrients (N), on carbon dioxide (CO2) fluxes, soil enzyme activities, soil fertility status, and microbial activities. There were eight treatments of soil amendments: without an amendment (CK), Nutrients (N), straw + nutrients (S+N), straw biochar + nutrients (SB+N), coal gas residue + nutrients (C+N), coal gas residue biochar + nutrients (CB+N), straw + straw biochar + nutrients (S+SB+N) and coal gas residue waste + coal gas residue biochar + nutrients (C+ CB +N). The results indicated that soil EC, pH, nitrate N (NO3 -- N), SOC, TN and available K were significantly (p < 0.05) increased coal gas residue biochar and combined with coal fly ash as compared to maize straw biochar and combined with maize straw and N treatments. The higher concentrations of soil MBC and MBN activities were increased in the maize straw application, while higher soil enzyme activity such as, invertase, urease and catalase were enhanced in the coal fly ash derived biochar treatments. The higher cumulative CO2 emissions were recorded in the combined applications of maize straw and its biochar as well as coal gas residue and its biochar treatment. Our study concludes, that maize straw and coal fly ash wastes were converted into biochar product could be a feasible substitute way of discarding, since land amendment and decreased CO2 fluxes and positive changes in soil microbial, and chemical properties, and can be confirmed under long-term conditions for reduction of economical and environment issues.
Zobrazit více v PubMed
Ahmad M., Ok Y.S., Rajapakshaa A.U., Lim J.E., Kim B., Ahn J., Lee Y.H., Al-Wabel M., Lee S., Lee S.S. Lead and copper immobilization in a shooting range soil using soybean stover and pine needle-derived biochars: chemical, microbial and spectroscopic assessments. J. Hazard. Mater. 2016;301:179–186. PubMed
Akhtar K., Wang W., Ren G., Khan A., Feng Y., Yang G. Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong. China. Soil Till. Res. 2018;182:94–102.
Ameloot N., Neve S.D., Jegajeevagan K., Yildiz G., Buchan D., Funkuin Y.N., Prins W., Bouckaert L., Sleutel S. Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biol. Biochem. 2013;57:401–410.
Awasthi M.K., Quan W., Hui H., Ren X., Lahori A.H., Mahar A., Ali A., Feng S., Li R., Zhang Z. Influence of zeolite and lime as additives on greenhouse gas emissions and maturity evolution during sewage sludge composting. Bioresour. Technol. 2016;216:172–181. PubMed
Bera T., Collins H.P., Alva A.K., Purakayastha T.J., Patra A.K. Biochar and manure effluent effects on soil biochemical properties under corn production. Appl. Soil Ecol. 2016;107:360–367.
Demisie W., Liu Z.Y., Zhang M.K. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena. 2014;121:214–221.
El-Mahrouky M., El-Naggar A.H., Usman A.R., Al-Wabel M. Dynamics of CO2 emission and biochemical properties of a sandy calcareous soil amended with Conocarpus waste and biochar. Pedo. 2015;25:46–56.
Foster E.J., Hansen N., Wallenstein M., Cotrufo M.F. Biochar and manure amendments impact soil nutrients and microbial enzymatic activities in a semi-arid irrigated maize cropping system. Agric. Ecosys. Environ. 2016;233:404–414. doi: 10.1016/j.agee.2016.09.029. DOI
Gascó G., Paz-Ferreiro J., Cely P., Plaza C., Méndez A. Influence of pig manure and its biochar on soil CO2 emissions and soil enzymes. Ecology Engineering. 2016;95:19–24.
Ghani M.I., Ali A., Atif M.J., Ali M., Amin B., Aness M., Khurshid H., Cheng Z. Changes in the soil microbiome in eggplant monoculture revealed by high-throughput illumina MiSeq sequencing as influenced by raw garlic stalk amendment. International Journal Molecules Science. 2019;20(9):2125. PubMed PMC
Gul S., Whalen J.K. Biochemical cycling of nitrogen and phosphorus in biochar amended soils. Soil Biol. Biochem. 2016:1–15. PubMed
Haider G., Steffens D., Moser G., Müller C., Kammann C.I. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agric. Ecosyst. Environ. 2017;237:80–94. doi: 10.1016/j.agee.2016.12.019. DOI
Hawthorne I., Johnson M.S., Jassal R.S., Black T.A., Grant N.J., Smukler S.M. Application of biochar and nitrogen influences fluxes of CO2, CH4 and N2O in a forest soil. J. Environ. Manage. 2017;192:203. PubMed
Jeffery S., Abalos D., Prodana M., van Bastos A., Groenigen J.W., Hungate B.A., Verheijen F. Biochar boosts tropical but not temperate crop yields. Environmental Research Letter. 2017;12
Jenkinson D.S., Ladd J.N. Microbial biomass in soil: measurement and turnover. Soil. 1981 Biochemistry.
Khan, M.N., Lan, Z., Sial, T.A., Zhao, Y., Haseeb, A., Zhang, J., Zhang, A., Hill, R.L., 2019. Straw and biochar effects on soil properties and tomato seedling growth under different moisture levels. Arch. Agron. Soil Sci. https://doi.org/10.1080/03650340.2019.1575510.
Kirkby C.A., Richardson A.E., Wade L.J., Passioura J.B., Batten G.D., Blanchard C. Nutrient Availability Limits Carbon Sequestration in Arable Soils. Soil Biol. Biochem. 2014;68(1):402–409.
Knudsen, D., Peterson, G.A., Pratt, P.F., 1982. Lithium, Sodium, and Potassium. Method of Soil & Analysis Part.Am.Soc.
Korai P.K., Xia X., Liu X., Bian R., Omondi M.O., Nahayo A. Extractable pool of biochar controls on crop productivity rather than greenhouse gas emission from a rice paddy under rice-wheat rotation. Sci. Rep. 2018;8:802. doi: 10.1038/s41598-018-19331-z. PubMed DOI PMC
Laghari M., Mirjat M.S., Hu Z., Fazal S., Xiao B., Hu M., Zhihua C., Dabin G. E_ects of biochar application rate on sandy desert soil properties and sorghum growth. Catena. 2015;135:313–320.
Lam, S.S., Liew, R. K., Cheng, Rasit, N., Ooi, C. K., Ma, N.L., Ng, J.H., Lam, W.H., Chong, C.T., Chase, H. A. 2018. Pyrolysis production of fruit peels biochar for potential use in treatment of palm oil mill effluent. Journal of Environment Management. 213, 400-408. PubMed
Lan Z.M., Chen C.R., Rashti M.R., Yang H., Zhang D.K. Stoichiometric ratio of dissolved organic carbon to nitrate regulates nitrous oxide emission from the biochar-amended soils. Sci. Total Environ. 2017;576:559–571. PubMed
Lehmann J., Joseph S. Biochar for environmental management: science, technology and implementation. Sci. Technol. Earthscan. 2009;25:15801–15811.
Lehmann, J., Kern, D., German, L., Mccann, J., Martins, G.C., Moreira, A., 2003. Soil Fertility and Production Potential. Springer Netherlands.
Li D., Wu D., Xu F., Lai J., Shao L. Literature overview of Chinese research in the field of better coal utilization. J. Clean. Prod. 2018;185:959–980.
Li Z., Schneider R.L., Morreale S.J., Xie Y., Li C., Li J. Woody organic amendments for retaining soil water, improving soil properties and enhancing plant growth in desertified soils of Ningxia, China. Geoderma. 2018;310:143–152. doi: 10.1016/j.geoderma.2017.09.009. DOI
Mukherjee A., Zimmerman A.R., Harris W. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma. 2011;163(3–4):247–255.
Murphy J., Riley J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 1962;27:31–36.
National Bureau of Statistics of the People’s Republic of China (NBS). Report on crop production in 2015 (in Chinese); 2015. Available online: 〈http://www.stats. gov.cn/tjsj/zxfb/201512/t20151208_1286449.html〉. [Accessed 15 December 2008].
Niazi N.K., Bibi I., Shahid M., Ok Y.S., Shaheen S.M., Rinklebe J., Wang H., Murtaza B., Islam E., Farrakh N.M., Lüttge A. Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: investigating arsenic fate using integrated spectroscopic and microscopic techniques. Sci. Total Environ. 2018;621:1642–1651. PubMed
Pan F., Yu W., Ma Q., Zhou H., Jiang C., Xu Y. Do organic amendments improve the synchronism between soil n supply and wheat demand? Appl. Soil Ecol. 2018;125:184–191.
Parkinson J.A., Allen S.E. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Geochmica Et Cosmochimica Acta. 1975;52:730–733.
Pathan, S.I., Žifˇcáková, L., Ceccherini, M.T., Pantani, O.L., Vˇetrovský, T., Baldrian, P. 2017. Seasonal variation and distribution of total and active microbial community of _-glucosidase encoding genes in coniferous forest soil. Soil Biol. Biochem. 105, 71–80.
Paz-Ferreiro J., Fu S., Méndez A., Gascó G. Interactive effects of biochar and the earthworm Pontoscolex corethrurus on plant productivity and soil enzyme activities. Journal of Soils Sediments. 2014;14:483–494.
Peng B., Li X., Zhao W., Yang L. Study on the release characteristics of chlorine in coal gangue under leaching conditions of different pH values. Fuel. 2018;217:427–433.
Peng Y.F., Guo D.L., Yang Y.H. Global patterns of root dynamics under nitrogen enrichment. Glob. Ecol. Biogeogr. 2017;26:102–114.
Rafique M., Ortas I., Rizwan M., Chaudhary H.J., Gurmani A.R., Munis M.F.H. Residual effects of biochar and phosphorus on growth and nutrient accumulation by maize (Zea mays L.) amended with microbes in texturally different soils. Chemosphere. 2020;238(124710) doi: 10.1016/j.chemosphere.2019.124710. PubMed DOI
Randolph P., Bansode R.R., Hassan O.A., Rehrah D., Ravella R., Reddy M.R. Effect of biochars produced from solid organic municipal waste on soil quality parameters. J. Environ. Manage. 2017;192:271–280. doi: 10.1016/j.jenvman.2017.01.061. PubMed DOI
Sadaf J., Shah G.A., Shahzad K., Ali N., Shahid M., Ali S., Hussain R.A., Ahmed Z.I., Traore B.I., Ismail M.I., Rashid M.I. Improvements in wheat productivity and soil quality can accomplish by co-application of biochars and chemical fertilizers. Sci. Total Environ. 2017;2017(607):715–724. PubMed
Salam A., Shaheen S.M., Bashir S., Khan I., Wang J., Rinklebe J., Rehman F.U., Hu H. Rice straw- and rapeseed residue-derived biochars affect the geochemical fractions and phytoavailability of Cu and Pb to maize in a contaminated soil under different moisture content. J. Environ. Manage. 2019;237:5–14. PubMed
Sikdar A., Wang J., Hasanuzzaman M., Liu X., Feng S., Roy R., Sial T.A., Lahori A.H., Jeyasundar P.G.S.A., Wang X. Phytostabilization of Pb-Zn mine tailings with amorpha fruticosa aided by organic amendments and triple superphosphate. Molecules. 2020;25:1617. doi: 10.3390/molecules25071617. PubMed DOI PMC
Shi T., Liu Y., Zhang L., Hao L., Gao Z. Burning in agricultural landscapes: an emerging natural and human issue in China. Landsc Ecol. 2014;29:1785–1798. doi: 10.1007/s10980-014-0060-9. DOI
Sial T.A., Khan M.N., Lan Z., Kumbhar F., Ying Z., Zhang J., Sun D., Li X. Contrasting effects of banana peels waste and its biochar on greenhouse gas emissions and soil biochemical properties. Process Saf. Environ. Prot. 2019;122:366–377.
Sial T.A., Liu J., Zhao Y., Khan M.N., Lan Z., Zhang J., Kumbhar F., Akhtar K., Rajpar I. Co-application of milk tea waste and NPK fertilizers to improve sandy soil biochemical properties and wheat growth. Molecules. 2019;24:423. PubMed PMC
Sial T.A., Lan Z., Khan M.N., Zhao Y., Kumbhar F., Liu J., Zhang A., Hill R.L., Lahori A.H., Memon M. Evaluation of orange peel waste and its biochar on greenhouse gas emissions and soil biochemical properties within a loess soil. Waste Manage. 2019;87:125–134. PubMed
Sial T.A., Lan Z., Wang L., Zhao Y., Zhang J., Kumbhar F., Memon M., Lashari M.S., Shah A.N. Effects of different biochars on wheat growth parameters, yield and soil fertility status in a silty clay loam soil. Molecules. 2019;24:1798. PubMed PMC
Sochan A., Bieganowski A., Ryżak M., Dobrowolski R., Bartmiński P. Comparison of soil texture determined by two dispersion units of Mastersizer 2000. Int. Agrophys. 2012;26:99–102.
Sun B., Zhang L.X., Yang L.Z., Zhang F.S., Norse D., Zhu Z.L. Agricultural non-point source pollution in China: causes and mitigation measures. Ambio. 2012;41(4):370–379. PubMed PMC
Tabatabai, M.A., Soil enzymes, in: R.W. Weaver, S. Augle, P.J. Bottomly, D. Bezdicek, S. Smith, M.A. Tabatabai, A. Wollum (Eds.), Methods of Soil Analysis: Part 2-Microbiological and Biochemical Properties, Soil Science Society of America, Madison, 1994, pp. 775-833.
Tammeorg P., Simojoki A., Mäkelä P., Stoddard F.L., Alakukku L., Helenius J. Biochar application to a fertile sandy clay loam in boreal conditions: effects on soil properties and yield formation of wheat, turnip rape and faba bean. Plant Soil. 2014;374:89–107.
Vance E.D., Brookes P.C., Jenkinson D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987;19(19):703–707.
Wang H., Cheng C., Chen C. Characteristics of polycyclic aromatic hydrocarbon release during spontaneous combustion of coal and gangue in the same coal seam. J. Loss Prev. Process Ind. 2018;55:392–399.
Wang, X., Song, D., Liang, G., Zhang, Q., Ai, C., Zhou, W., 2015. Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil.
Wu F., Jia Z., Wang S., Chang S.X., Startsev A. Contrasting effects of wheat straw and its biochar on greenhouse gas emissions and enzyme activities in a Chernozemic soil. Biol. Fertil. Soils. 2013;49:555–565.
Wuest S.B., Caesar-Tonthat T.C., Wright S.F., Williams J.D. Organic matter addition, N, and residue burning effects on infiltration, biological, and physical properties of an intensively tilled silt-loam soil. Soil Tillage Res. 2005;84:154–167. doi: 10.1016/j.still.2004.11.008. DOI
Yang L., Zhang X., Ju X. Linkage between N2O emission and functional gene abundance in an intensively managed calcareous fluvo-aquic soil. Sci. Rep. 2017;7:43283. doi: 10.1038/srep43283. PubMed DOI PMC
Zhang A., Cheng G., Hussain Q., Zhang M., Feng H., Dyck M., Sun B., Zhao Y., Chen H., Chen J. Contrasting effects of straw and straw–derived biochar application on net global warming potential in the Loess Plateau of China. Field Crops Res. 2017;205:45–54.
Zhang M., Cheng G., Feng H., Sun B., Zhao Y., Chen H., Chen J., Dyck M., Wang X., Zhang J. Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau. China. Environmental Science & Pollution Research. 2017;24(11):10108–10120. PubMed
Zhang X., Davidson E.A., Mauzerall D.L., Searchinger T.D., Dumas P., Shen Y. Managing nitrogen for sustainable development. Nature. 2015;528(7580):51–59. PubMed
Zhou C., Liu G., Yan Z., Fang T., Wang R. Transformation behavior of mineral composition and trace elements during coal gangue combustion. Fuel. 2012;97:644–650.
Zhu L.X., Xiao Q., Shen Y.F., Li S.Q. Effects of biochar and maize straw on the short-term carbon and nitrogen dynamics in a cultivated silty loam in China. Environ. Sci. Pollut. Res. 2017;24:10–19. PubMed
Pittelkow C.M., Liang X., Linquist B.A., Lee K.J., van Groenigen J., Lundy M.E., van Gestel N., Six J., Venterea R.T., van Kessel C. Productivity limits and potentials of the principles of conservation agriculture. Nature. 2015;517:365–368. PubMed
Coleman, D.C., Fu, S.L., Hendrix Jr., P., D, C., 2002. Soil foodwebs in agroecosystems: impacts of herbivory and tillage management. European Journal of Soil Biology 38, 0–28.
Poirier V., Angers D.A., Whalen J.K. Formation of millimetric-scale aggregates and associated retention of 13C–15N-labelled residues are greater in subsoil than topsoil. Soil Biol. Biochem. 2014;75:45–53.