Nanoparticles combined with cefixime as an effective synergistic strategy against Salmonella enterica typhi
Status PubMed-not-MEDLINE Jazyk angličtina Země Saúdská Arábie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34354396
PubMed Central
PMC8324992
DOI
10.1016/j.sjbs.2021.05.032
PII: S1319-562X(21)00399-5
Knihovny.cz E-zdroje
- Klíčová slova
- Ag, Antimicrobial, Cu, Ni, Salmonella enterica typhi, Synergistic, Zn,
- Publikační typ
- časopisecké články MeSH
Enteric fever caused by Salmonella typhi has been the most crucial health issue in rural people, especially in Southeast Asia and Africa. Another disease, Salmonellosis, caused by a large group of bacteria of the genus Salmonella, cause substantial economic loss resulting from mortality and morbidity. Higher concentration and repeated use of antibiotics to treat these diseases will likely develop antibiotic resistance among the microbes. The nanoparticle has good penetration power and can kill microbes. Combining two strategies by using nanoparticles with antibiotics kills microbes and reduces the chances of the development of antibiotics resistance. Silver, Nickel, Copper, and Zinc oxide Nanoparticles were chemically synthesized and characterized in this study. Silver nanoparticles at a concentration of 10 µg/ml inhibit all the strains under study. In comparison, silver nanoparticles (16.90 µg/ml), Nickel nanoparticles (83 µg ml-1), Copper nanoparticles (249 µg ml-1), and Zinc oxide (1614 µg ml-1) along with 50 µg/ml cefixime gave maximum zone of inhibition of 35 mm, 19 mm, 31 mm and 23 mm respectively. The antimicrobial assay showed that silver nanoparticles presented good antibacterial performance against all multi-drug-resistant pathogenic Salmonella sp alone as well as in combinations. The present study proved that silver nanoparticles at the lowest concentration along with cefixime could be a possible alternative to control the multi-drug-resistant pathogens.
Dept of Microbiology PSGVP Mandal's Arts Sci and Comm College SHAHADA 425409 India
Medical Laboratory Technology Department Jazan University Jazan Saudi Arabia
Naranalala College of Professional and Applied Sciences Navsari Gujarat India
Navsari Agricultural University Navsari Gujarat India
SMIRES for Consultation in Specialized Medical Laboratories Jazan University Jazan Saudi Arabia
Zobrazit více v PubMed
Ahmad S., Ahmad M., Hussain N., Khan T.R. Efficacy of cefixime in the treatment of uncomplicated typhoid. Med. Forum Mon. 2014;25:75–77.
Das A.C.G., Ganesh Kumar V., Stalin Dhas T., Karthick V., Govindaraju K., Mary Joselin J., Baalamurugan J. Biocatal. Agric. Biotechnol. 2020;27
Al-Waili Noori. Antibiotic, Pesticide, and Microbial Contaminants of Honey: Human Health Hazards. The Scientific World Journal. 2012;2012 doi: 10.1100/2012/930849. PubMed DOI PMC
AL-Waili N. Synergistic Effects of Honey and Propolis toward Drug Multi-Resistant Staphylococcus Aureus, Escherichia Coli and Candida Albicans Isolates in Single and Polymicrobial Cultures. International Journal of Medical Sciences. 2012;9(9):792–800. PubMed PMC
AL-Waili Noori. Differences in Composition of Honey Samples and Their Impact on the Antimicrobial Activities against Drug Multiresistant Bacteria and Pathogenic Fungi. Archives of Medical Research. 2013;44(4):307–316. doi: 10.1016/j.arcmed.2013.04.009. PubMed DOI
Ansari M.J. Effect of Jujube Honey on Candida albicans Growth and Biofilm Formation. Archives of Medical Research. 2013;44(5):352–360. doi: 10.1016/j.arcmed.2013.06.003. PubMed DOI
Chattopadhyay S., Chakraborty S.P., Laha D., Baral R., Pramanik P., Roy S. Surface-modified cobalt oxide nanoparticles: new opportunities for anti-cancer drug development. Cancer Nanotechnol. 2012;3:13–23. doi: 10.1007/s12645-012-0026-z. PubMed DOI PMC
Chaudhary M.K., Rayamajhi B.S., Paudel K., Bajracharya P., Chaudhary R.S., Gyawali S. Efficacy of cefixime in the treatment of typhoid fever. Int. J. Pharma. Biol. Arch. 2013;4(2):307–309.
Dong Y., Zhu H., Shen Y., Zhang W., Zhang L. Antibacterial activity of silver nanoparticles of different particle size against Vibrio natriegens. PLoS ONE. 2019;14(9):e0222322. PubMed PMC
Ghramh H.A. Biogenic Synthesis of Silver Nanoparticles Using Propolis Extract, Their Characterization, and Biological Activities. Science of Advanced Materials. 2019;11(6):876–883. doi: 10.1166/sam.2019.3571. DOI
Huh A.J., Kwon Y.J. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release. 2011;156:128–145. doi: 10.1016/j.jconrel.2011.07.002. PubMed DOI
Joel C., Badhusha M.S.M. Green Synthesis of ZnO nanoparticles using Phyllanthus umbilical stem extract and their antibacterial activity. Der Pharm. Lett. 2016;8:218–223.
Jyoti K., Baunthiyal M., Singh A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 2016;9:217–227. doi: 10.1016/j.jrras.2015.10.002. DOI
Khan A., Rashid A., Younas R., Chong R. A chemical reduction approach to the Synthesis of copper nanoparticles. Int. Nano Lett. 2016;6:21–26. doi: 10.1007/s40089-015-0163-6. DOI
Krishna G., Kumar S.S., Pranitha V., Alha M., Charaya S. Biogenic Synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against Salmonella S.P. Int. J. Pharm. Pharm. Sci. 2015;7:84–88.
Kumar A., Karimi N.A. Synthesis of Zinc oxide nanoparticles by Sol-Gel method and drop-wise mixing process. J. Surface Sci. Technol. 2015;31:179–183.
Kumara Swamy M., Sudipta K.M., Jayanta K., Balasubramanya S. The green Synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract. Appl. Nanosci. 2015;5:73–81. doi: 10.1007/s13204-014-0293-6. DOI
Mahamuni P.P., Patil P.M., Dhanavade M.J., Badiger M.V., Shadija P.G., Lokhande A.C., Bohara R.A. Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochem. Biophys. Reports. 2019;17:71–80. doi: 10.1016/j.bbrep.2018.11.007. PubMed DOI PMC
Mather A.E., Reid S.W.J., Maskell D.J., Parkhill J., Fookes M.C., Harris S.R., Brown D.J., Coia J.E., Mulvey M.R., Gilmour M.W., Petrovska L., De Pinna E., Kuroda M., Akiba M., Izumiya H., Connor T.R., Suchard M.A., Lemey P., Mellor D.J., Haydon D.T., Thomson N.R. Distinguishable epidemics of multidrug-resistant Salmonella typhimurium DT104 in different hosts. Science (80) 2013;341:1514–1517. doi: 10.1126/science.1240578. PubMed DOI PMC
McShan D., Zhang Y., Deng H., Ray P.C., Yu H. Synergistic antibacterial effect of silver nanoparticles combined with ineffective antibiotics on drug-resistant Salmonella typhimurium DT104. J. Environ. Sci. Heal. – Part C Environ. Carcinog. Ecotoxicol. Rev. 2015;33:369–384. doi: 10.1080/10590501.2015.1055165. PubMed DOI
Mukherjee S., Chowdhury D., Kocherlakota R., Patra S., Vinothkumar B., Bhadra M.P., Sreedhar B., Patra C.R. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system) Theranostics. 2014;4:316–335. doi: 10.7150/thno.7819. PubMed DOI PMC
Naqvi S.Z.H., Kiran U., Ali M.I., Jamal A., Hameed A., Ahmed S., Ali N. Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria. Int. J. Nanomedicine. 2013;8:3187–3195. doi: 10.2147/IJN.S49284. PubMed DOI PMC
Patra J.K., Baek K.H. Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria and its anticandidal and antioxidant effects. Front. Microbiol. 2017;8:1–14. doi: 10.3389/fmicb.2017.00167. PubMed DOI PMC
Rajan A., Cherian E., Baskar G. Biosynthesis of zinc oxide nanoparticles using Aspergillus fumigatus JCF and its antibacterial activity. Inter. J. Modern Sci. Technol. 2016;1:52–57.
Rashid M.U., Bhuiyan M.K.H., Quayum M.E. Synthesis of silver nanoparticles (Ag-NPs) and their uses for quantitative analysis of vitamin C tablets. Dhaka Univ. J. Pharm. Sci. 2013;12:29–33. doi: 10.3329/dujps.v12i1.16297. DOI
Rose A.L., Priya F.J., Vidhya S., Thattil P.P. Antifungal and antioxidant activity of the microwave assisted green Synthesis of silver nanoparticles using aloin derivative. Pharma Innov. 2017;6:25.