The Influence of Locality on Phenolic Profile and Antioxidant Capacity of Bud Extracts
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
2107/2020
Specific Research Project of Faculty of Science, University of Hradec Kralove
PubMed
34359478
PubMed Central
PMC8306517
DOI
10.3390/foods10071608
PII: foods10071608
Knihovny.cz E-resources
- Keywords
- UHPLC-MS (ultra-high-pressure liquid chromatography), antioxidants, gemmotherapy, phenolic acid,
- Publication type
- Journal Article MeSH
Gemmotherapy represents the most recent therapeutic technique that uses the properties of extracts from fresh meristematic plant tissues, mainly buds and sprouts, by macerating them in ethanol and glycerol. The harvesting time and the location can significantly affect the chemical composition of the buds. Therefore, this work aimed to point out the possible variability in the phenolic content and the antioxidant potential of extracts prepared from commonly grown trees in the Czech Republic. Extracts from buds collected during autumn and spring in three different localities were analysed using UHPLC-MS (ultra-high-pressure liquid chromatography) for the phenols profile. Five tests assays were used for the evaluation of the extract antioxidant potential. The sampling time positively affected the content of total phenols, flavonoids, and phenolic acids. The increased levels of total phenols and flavonoids in localities with high and medium pollution may be the result of the higher levels of NO and SO2, the main air pollutants. However, surprisingly, the content of phenolic acid showed the highest values in the area with the lowest pollution. The results of antioxidant tests did not completely correlate with the levels of phenolic metabolites, which may be due to the involvement of other active molecules (e.g., ascorbate, tocopherol, or proline) in the antioxidant machinery.
See more in PubMed
Dai J., Mumper R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules. 2010;15:7313–7352. doi: 10.3390/molecules15107313. PubMed DOI PMC
Scheibmeir H.D., Christensen K., Whitaker S.H., Jegaethesan J., Clancy R., Pierce J.D. A review of free radicals and antioxidants for critical care nurses. Intensive Crit. Care Nurs. 2005;21:24–28. doi: 10.1016/j.iccn.2004.07.007. PubMed DOI
Philippe P. Treatise on Gemmotherapy: The Therapeutic USE of Buds. 1st ed. Editions Amyris; Brussel, Belgium: 2012. p. 375.
Donno D., Beccaro G.L., Mellano M.G., Bonvegna L., Bounous G. Castanea spp. buds as a phytochemical source for herbal preparations: Botanical fingerprint for nutraceutical identification and functional food standardization. J. Sci. Food Agric. 2014;94:2863–2873. doi: 10.1002/jsfa.6627. PubMed DOI
Vagiri M., Ekholm A., Johansson E., Andersson S.C., Rumpunen K. Major phenolic compounds in black currant (Ribes nigrum L.) buds: Variation due to genotype, ontogenetic stage and location. LWT Food Sci. Technol. 2015;63:1274–1280. doi: 10.1016/j.lwt.2015.04.006. DOI
Laitinen M.-L., Julkunen-Tiitto R., Rousi M. Foliar phenolic composition of European white birch during bud unfolding and leaf development. Physiol. Plant. 2002;114:450–460. doi: 10.1034/j.1399-3054.2002.1140315.x. PubMed DOI
Orodan M., Vodnar D.C., Toiu A.M., Pop C.E., Vlase L., Viorica I., Arsene A.L. Phytochemical analysis, antimicrobial and antioxidant effect of some gemmotherapic remedies used in respiratory diseases. Farmacia. 2016;64:224–230.
Almeida I.F., Valentão P., Andrade P.B., Seabra R.M., Pereira T.M., Amaral M.H., Costa P.C., Bahia M.F. Oak leaf extract as topical antioxidant: Free radical scavenging and iron chelating activities and in vivo skin irritation potential. BioFactors. 2008;33:267–279. doi: 10.1002/biof.5520330403. PubMed DOI
Popovi B.M., Štajner D., Cdero R., Orlovi S., Gali Z. Antioxidant Characterization of Oak Extracts Combining Spectrophotometric Assays and Chemometrics. Sci. World J. 2013;134656:1–8. doi: 10.1155/2013/134656. PubMed DOI PMC
Bi W., Gao Y., Shen J., He C., Liu H., Peng Y., Zhang C., Xiao P. Traditional uses, phytochemistry, and pharmacology of the genus Acer (maple): A review. J. Ethnopharmacol. 2016;189:31–60. doi: 10.1016/j.jep.2016.04.021. PubMed DOI
Czech Hydrometeorological Institute. [(accessed on 7 May 2021)]; Available online: https://www.chmi.cz/files/portal/docs/uoco/web_generator/plants/index_CZ.html.
Council of Europe . European Pharmacopoeia. 7th ed. Council of Europe; Strasbourg, France: 2011. pp. 745–746.
Dučaiová Z., Sajko M., Mihaličová S., Repčák M. Dynamics of accumulation of coumarin-related compounds in leaves of Matricaria chamomilla after methyl jasmonate elicitation. Plant Growth Regul. 2016;79:81–94. doi: 10.1007/s10725-015-0114-2. DOI
Kovalikova Z., Kubes J., Skalicky M., Kuchtickova N., Maskova L., Tuma J., Vachova P., Hejnak V. Changes in content of polyphenols and ascorbic acid in leaves of white cabbage after pest infestation. Molecules. 2019;24:2622. doi: 10.3390/molecules24142622. PubMed DOI PMC
Mathew S., Abraham T.E., Zakaria Z.A. Reactivity of phenolic compounds towards free radicals under in vitro conditions. J. Food Sci. Technol. 2015;52:5790–5798. doi: 10.1007/s13197-014-1704-0. PubMed DOI PMC
Soto E., Diaz-Gonzalez R., Simirgiotis M.J., Parra C. Potential of Baccharis alnifolia Meyen & Walpan (Chilka) from northern Chile used as a medicinal infusion. Cienc. Rural. 2019;49:1–7.
Valentão P., Fernandes E., Carvalho F., Andrade P.B., Seabra R.M., Bastos M.L. Antioxidant Activity of Centaurium erythraea Infusion Evidenced by Its Superoxide Radical Scavenging and Xanthine Oxidase Inhibitory Activity. J. Agric. Food Chem. 2001;49:3476–3479. doi: 10.1021/jf001145s. PubMed DOI
Dvaranauskaite A., Venskutonis P., Raynaud C., Talou T., Viskelis P., Sasnauskas A. Variations in the essential oil composition in buds of six blackcurrant (Ribes nigrum L.) cultivars at various development phases. Food Chem. 2009;114:671–679. doi: 10.1016/j.foodchem.2008.10.005. DOI
Loponen J., Lempa K., Ossipov V., Kozlov M.V., Girs A., Hangasmaa K., Haukioja E., Pihlaja K. Patterns in content of phenolic compounds in leaves of mountain birches along a strong pollution gradient. Chemosphere. 2001;45:291–301. doi: 10.1016/S0045-6535(00)00545-2. PubMed DOI
Pasqualini V., Robles C., Garzino S., Greff S., Bousquet-Melou A., Bonin G. Phenolic compounds content in Pinus halepensis Mill. needles: A bioindicator of air pollution. Chemosphere. 2003;52:239–248. doi: 10.1016/S0045-6535(03)00268-6. PubMed DOI
Senica M., Stampar F., Veberic R., Mikulic-Petkovsek M. The higher the better? Differences in phenolics and cyanogenic glycosides in Sambucus nigra leaves, flowers and berries from different altitudes. J. Sci. Food Agric. 2017;97:2623–2632. doi: 10.1002/jsfa.8085. PubMed DOI
Bernal M., Llorens L., Julkunen-Tiitto R., Badosa J., Verdaguer D. Altitudinal and seasonal changes of phenolic compounds in Buxus sempervirens leaves and cuticles. Plant Physiol. Biochem. 2013;70:471–482. doi: 10.1016/j.plaphy.2013.06.012. PubMed DOI
Gouvinhas I., Pinto R., Santos R., Saavedra M.J., Barros A.I. Enhanced phytochemical composition and biological activities of grape (Vitis vinifera L.) stems growing in low altitude regions. Sci. Hortic. 2020;265:109248. doi: 10.1016/j.scienta.2020.109248. DOI
Márquez-García B., Fernández Á., Córdoba F. Phenolics composition in Erica sp. differentially exposed to metal pollution in the Iberian Southwestern Pyritic Belt. Bioresour. Technol. 2009;100:446–451. doi: 10.1016/j.biortech.2008.04.070. PubMed DOI
Donno D., Mellano M.G., Cerutti A.K., Beccaro G.L. Biomolecules and Natural Medicine Preparations: Analysis of New Sources of Bioactive Compounds from Ribes and Rubus spp. Buds. Pharmaceuticals. 2016;9:7. doi: 10.3390/ph9010007. PubMed DOI PMC
Huang D., Ou B., Prior R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005;53:1841–1856. doi: 10.1021/jf030723c. PubMed DOI
Calliste C.A., Trouillas P., Allais D.-P., Simon A., Duroux J.-C. Free Radical Scavenging Activities Measured by Electron Spin Resonance Spectroscopy and B16 Cell Antiproliferative Behaviors of Seven Plants. J. Agric. Food Chem. 2001;49:3321–3327. doi: 10.1021/jf010086v. PubMed DOI
Raiciu A.D., Popescu M., Manea S., Dima S.O. Antioxidant Activity and Phyto-therapeutic Properties of Gemmo-Derivatives Obtained from Rosmarinus officinalis, Vaccinium myrtillus, Salix alba, Ribes nigrum, and Betula pubescens. Rev. Chim. 2016;67:1936–1939.
Costea T., Vlase L., Ancuceanu R.V., Dinu M., Olah N.K., Popescu M.L., Gird C.E. Chemical Composition, Antioxidant Activity and Phytotoxic Properties of Silver Birch Leaves. Rom. Biotechnol. Lett. 2016;21:11527–11538.
Skrypnik L., Grigorev N., Michailov D., Antipina M., Danilova M., Pungin A. Comparative study on radical scavenging activity and phenolic compounds content in water bark extracts of alder (Alnus glutinosa (L.) Gaertn.), oak (Quercus robur L.) and pine (Pinus sylvestris L.) Eur. J. Wood Wood Prod. 2019;77:879–890. doi: 10.1007/s00107-019-01446-3. DOI
Azadeh Z., Saeidi K., Lorigooini Z., Kiani M., Maggi F. Organ-oriented phytochemical profiling and radical scavenging activity of Alcea spp. (Malvaceae) from Iran. SN Appl. Sci. 2020;2:927. doi: 10.1007/s42452-020-2410-3. DOI
Kumar S., Yadav A., Yadav M., Yadav J.P. Effect of climate change on phytochemical diversity, total phenolic content and in vitro antioxidant activity of Aloe vera (L.) Burm.f. BMC Res. Notes. 2017;10:60. doi: 10.1186/s13104-017-2385-3. PubMed DOI PMC
Kono Y., Kashine S., Yoneyama T., Sakamoto Y., Matsui Y., Shibata H. Iron chelation by chlorogenic acid as a natural antioxidant. Biosci. Biotechnol. Biochem. 1998;62:22–27. doi: 10.1271/bbb.62.22. PubMed DOI
Cai Y.-Z., Sun M., Xing J., Luo Q., Corke H. Structure–radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 2006;78:2872–2888. doi: 10.1016/j.lfs.2005.11.004. PubMed DOI
Meda N.R., Suwal S., Rott M., Poubelle P.E., Stevanovic T. Investigation of extracts from red and sugar maple buds as potential sources of antioxidant phytochemicals. Curr. Top. Phytochem. 2016;13:69–78.
Tuyen P.H., Khang D.T., Thu Ha P.T., Hai T.N., Elzaawely A.A., Xuan T.D. Antioxidant capacity and phenolic contents of three Quercus species. Int. Lett. Nat. Sci. 2016;54:85–99. doi: 10.18052/www.scipress.com/ILNS.54.85. DOI