Comparison of Clinical Outcomes, Visual Quality and Visual Function of Two Presbyopia-Correcting Intraocular Lenses Made from the Same Material, but with Different Design and Optics
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34362052
PubMed Central
PMC8347739
DOI
10.3390/jcm10153268
PII: jcm10153268
Knihovny.cz E-zdroje
- Klíčová slova
- 677MY, 839M, cataract, contrast sensitivity, dysphotopsia, multifocal intraocular lenses (MIOL), posterior capsule opacification, presbyopia, visual function, visual outcomes,
- Publikační typ
- časopisecké články MeSH
This semi-prospective, parallel, comparative investigation evaluated the clinical outcomes and quality of vision (contrast sensitivity, visual function, dysphotopsia, spectacle use, overall satisfaction) after mono- or bilateral implantation of two presbyopia-correcting intraocular lenses (IOL)-the Liberty® 677MY or the AT LISA® tri 839M-in 50 eyes of 25 cataract patients. Clinical outcomes were assessed 3 and 12 months postoperatively. Eighty-nine percent of eyes implanted with the Liberty IOL and 59% of eyes implanted with the AT LISA IOL achieved a refractive outcome ±0.5 diopters of the target (emmetropia). Refractive outcomes were stable with both lenses. The proportions of eyes with 20/20 uncorrected distance visual acuity (UDVA) and 20/20 uncorrected near visual acuity (UNVA) were higher in the Liberty group than in the AT LISA group (UDVA: 56% vs. 41%; UNVA: 83% vs. 66%). Optical quality assessment results were comparable for the two IOLs. Superior photopic contrast sensitivity was found with the Liberty lens. The rate of Nd:YAG capsulotomy at the 12-month follow-up was 16.7% in the Liberty group and 40.6% for the AT LISA IOL. Considering that both lenses are made from the same material, we propose that the noted differences in clinical outcomes may derive from differences in design and optical surface between the two IOLs.
Zobrazit více v PubMed
ESCRS 2019 Clinical Trends Survey Results. [(accessed on 5 November 2020)];EuroTimes. 2020 Available online: https://www.eurotimes.org/wp-content/uploads/2020/11/Clinical-Survey-Results-2019-Supplement_PQ.pdf.
Logothetis H.D., Feder R.S. Which intraocular lens would ophthalmologists choose for themselves? Eye. 2019;33:1635–1641. doi: 10.1038/s41433-019-0460-9. PubMed DOI PMC
Buckhurst P.J., Naroo S.A., Davies L.N., Shah S., Drew T., Wolffsohn J.S. Assessment of dysphotopsia in pseudophakic subjects with multifocal intraocular lenses. BMJ Open Ophthalmol. 2017;1:e000064. doi: 10.1136/bmjophth-2016-000064. PubMed DOI PMC
Masket S., Fram N.R. Pseudophakic Dysphotopsia: Review of Incidence, Cause, and Treatment of Positive and Negative Dysphotopsia. Ophthalmology. 2020:30787–30789. doi: 10.1016/j.ophtha.2020.08.009. PubMed DOI
Schartmüller D., Schriefl S., Schwarzenbacher L., Leydolt C., Kundi M., Pieh S., Menapace R., Kriechbaum K. Posterior capsule opacification and Nd:YAG laser rates with two hydrophobic acrylic single-piece IOLs. Eye. 2020;5:857–863. doi: 10.1038/s41433-019-0569-x. PubMed DOI PMC
Yagci R., Uzun F., Acer S., Hepsen I.F. Comparison of visual quality between aspheric and spherical IOLs. Eur. J. Ophthalmol. 2014;5:688–692. doi: 10.5301/ejo.5000452. PubMed DOI
Tang Y., Song H., Chen J., Tang X. Comparison of pseudophakic retinal straylight in spherical/aspherical and hydrophobic/hydrophilic intraocular lens. Int. J. Ophthalmol. 2015;6:1146–1150. doi: 10.3980/j.issn.2222-3959.2015.06.12. PubMed DOI PMC
Savini G., Barboni P., Ducoli P., Borrelli E., Hoffer K.J. Influence of intraocular lens haptic design on refractive error. J. Cataract Refract. Surg. 2014;9:1473–1478. doi: 10.1016/j.jcrs.2013.12.018. PubMed DOI
Zhu X., Meng J., He W., Rong X., Lu Y. Comparison of the rotational stability between plate-haptic toric and C-loop haptic toric IOLs in myopic eyes. J. Cataract Refract. Surg. 2020;10:1353–1359. doi: 10.1097/j.jcrs.0000000000000259. PubMed DOI
Rosen E., Alió J.L., Dick H.B., Dell S., Slade S. Efficacy and safety of multifocal intraocular lenses following cataract and refractive lens exchange: Metaanalysis of peer-reviewed publications. J. Cataract Refract. Surg. 2016;2:310–328. doi: 10.1016/j.jcrs.2016.01.014. PubMed DOI
Pérez-Vives C. Biomaterial influence on intraocular lens performance: An overview. J. Ophthalmol. 2018;2018:2687385. doi: 10.1155/2018/2687385. PubMed DOI PMC
Masket S., Rupnick Z., Fram N.R., Kwong S., McLachlan J. Surgical management of positive dysphotopsia: U.S. perspective. J. Cataract Refract. Surg. 2020:1474–1479. doi: 10.1097/j.jcrs.0000000000000307. PubMed DOI
Miyata K., Kataoka Y., Matsunaga J., Honbo M., Minami K. Prospective Comparison of One-Piece and Three-Piece Tecnis Aspheric Intraocular Lenses: 1-year Stability and its Effect on Visual Function. Curr. Eye Res. 2015;9:930–935. doi: 10.3109/02713683.2014.968936. PubMed DOI
Poyales F., Pérez R., López-Brea I., Zhou Y., Rico L., Garzón N. Comparison of Visual Performance and Patient Satisfaction Outcomes with Two Trifocal IOLs with Similar Optical Design but Different Materials. Clin. Ophthalmol. 2020;14:3237–3247. doi: 10.2147/OPTH.S273641. PubMed DOI PMC
Buehl W., Findl O. Effect of intraocular lens design on posterior capsule opacification. J. Cataract Refract. Surg. 2008;11:1976–1985. doi: 10.1016/j.jcrs.2008.07.029. PubMed DOI
Iliescu I.M., Constantin M.A., Cozma C., Moraru O.M., Moraru C.M. Posterior Capsule Opacification and Nd-YAG rates evaluation in a large series of pseudophakic cases. Rom. J. Ophthalmol. 2017;4:267–274. doi: 10.22336/rjo.2017.48. PubMed DOI PMC
Billotte C., Berdeaux G. Adverse clinical consequences of neodymium:YAG laser treatment of posterior capsule opacification. J. Cataract Refract. Surg. 2004;10:2064–2071. doi: 10.1016/j.jcrs.2004.05.003. PubMed DOI
World Medical Association World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA. 2013;20:2191–2194. doi: 10.1001/jama.2013.281053. PubMed DOI
Novacek L. Comparison of clinical outcomes, visual quality and visual function of two presbyopia-correcting intraocular lenses made from the same material, but with different design and optics. Mendeley Data V1. 2021 doi: 10.17632/y6n5k7s6f7.1. PubMed DOI PMC
Reinstein D.Z., Archer T.J., Srinivasan S., Mamalis N., Kohnen T., Dupps W.J., Jr., Randleman J.B. Standard for reporting refractive outcomes of intraocular lens-based refractive surgery. J. Cataract Refract. Surg. 2017;4:435–439. doi: 10.1016/j.jcrs.2017.04.005. PubMed DOI
Serdiuk V., Ustymenko S., Fokina S., Ivantsov I. Comparison of three different presbyopia-correcting intraocular lenses. Rom. J. Ophthalmol. 2020;4:364–379. doi: 10.22336/rjo.2020.58. PubMed DOI PMC
Piovella M., Colonval S., Kapp A., Reiter J., Van Cauwenberge F., Alfonso J. Patient outcomes following implantation with a trifocal toric IOL: Twelve-month prospective multicentre study. Eye. 2019;1:144–153. doi: 10.1038/s41433-018-0076-5. PubMed DOI PMC
Gyory J.F., Madár E., Srinivasan S. Implantation of a diffractive-refractive trifocal intraocular lens with centralized diffractive rings: Two-year results. J. Cataract Refract. Surg. 2019;5:639–646. doi: 10.1016/j.jcrs.2019.01.024. PubMed DOI
Fernández J., Rodríguez-Vallejo M., Martínez J., Tauste A., Piñero D.P. Biometric Factors Associated with the Visual Performance of a High Addition Multifocal Intraocular Lens. Curr. Eye Res. 2018;8:998–1005. doi: 10.1080/02713683.2018.1478981. PubMed DOI
García-Bella J., Ventura-Abreu N., Morales-Fernández L., Talavero-González P., Carballo-Álvarez J., Sanz-Fernández J.C., Vázquez-Moliní J.M., Martínez-de-la-Casa J.M. Visual outcomes after progressive apodized diffractive intraocular lens implantation. Eur. J. Ophthalmol. 2018;3:282–286. doi: 10.5301/ejo.5001030. PubMed DOI
Kim B.H., Hyon J.Y., Kim M.K. Effects of Bifocal versus Trifocal Diffractive Intraocular Lens Implantation on Visual Quality after Cataract Surgery. Korean J. Ophthalmol. 2019;4:333–342. doi: 10.3341/kjo.2019.0001. PubMed DOI PMC
Lapid-Gortzak R., Bhatt U., Sanchez J.G., Guarro M., Hida W.T., Bala C., Nosé R.M., Rodriguez Alvira F.J., Martinez A. Multicenter visual outcomes comparison of 2 trifocal presbyopia-correcting IOLs: 6-month postoperative results. J. Cataract Refract. Surg. 2020;11:1534–1542. doi: 10.1097/j.jcrs.0000000000000274. PubMed DOI
Webers V.S.C., Bauer N.J.C., Saelens I.E.Y., Creten O.J.M., Berendschot T.T.J.M., van den Biggelaar F.J.H.M., Nuijts R.M.M.A. Comparison of the intermediate distance of a trifocal IOL with an extended depth-of-focus IOL: Results of a prospective randomized trial. J. Cataract Refract. Surg. 2020;2:193–203. doi: 10.1097/j.jcrs.0000000000000012. PubMed DOI
Mojzis P., Majerova K., Hrckova L., Piñero D.P. Implantation of a diffractive trifocal intraocular lens: One-year follow-up. J. Cataract Refract. Surg. 2015;8:1623–1630. doi: 10.1016/j.jcrs.2014.11.050. PubMed DOI
Tarib I., Diakonis V.F., Breyer D., Höhn F., Hahn U., Kretz F.T.A. Outcomes of combining a trifocal and a low-addition bifocal intraocular lens in patients seeking spectacle independence at all distances. J. Cataract Refract. Surg. 2019;5:620–629. doi: 10.1016/j.jcrs.2019.01.013. PubMed DOI
de Silva S.R., Evans J.R., Kirthi V., Ziaei M., Leyland M. Multifocal versus monofocal intraocular lenses after cataract extraction. Cochrane Database Syst. Rev. 2016;12:CD003169. doi: 10.1002/14651858.CD003169.pub4. PubMed DOI PMC
Shah S., Peris-Martinez C., Reinhard T., Vinciguerra P. Visual outcomes after cataract surgery: Multifocal versus monofocal intraocular lenses. J. Refract. Surg. 2015;10:658–666. doi: 10.3928/1081597X-20150611-01. PubMed DOI
Cao K., Friedman D.S., Jin S., Yusufu M., Zhang J., Wang J., Hou S., Zhu G., Wang B., Xiong Y., et al. Multifocal versus monofocal intraocular lenses for age-related cataract patients: A system review and meta-analysis based on randomized controlled trials. Surv. Ophthalmol. 2019;5:647–658. doi: 10.1016/j.survophthal.2019.02.012. PubMed DOI
Javitt J.C., Steinert R.F. Cataract extraction with multifocal intraocular lens implantation: A multinational clinical trial evaluating clinical, functional, and quality-of-life outcomes. Ophthalmology. 2000;11:2040–2048. doi: 10.1016/S0161-6420(00)00368-7. PubMed DOI
Javitt J.C., Wang F., Trentacost D.J., Rowe M., Tarantino N. Outcomes of cataract extraction with multifocal intraocular lens implantation: Functional status and quality of life. Ophthalmology. 1997;4:589–599. doi: 10.1016/S0161-6420(97)30265-6. PubMed DOI
Vingolo E.M., Grenga P., Iacobelli L., Grenga R. Visual acuity and contrast sensitivity: AcrySof ReSTOR apodized diffractive versus AcrySof SA60AT monofocal intraocular lenses. J. Cataract Refract. Surg. 2007;7:1244–1247. doi: 10.1016/j.jcrs.2007.03.052. PubMed DOI
de Vries N.E., Webers C.A., Touwslager W.R., Bauer N.J., de Brabander J., Berendschot T.T., Nuijts R.M. Dissatisfaction after implantation of multifocal intraocular lenses. J. Cataract Refract. Surg. 2011;5:859–865. doi: 10.1016/j.jcrs.2010.11.032. PubMed DOI
Woodward M.A., Randleman J.B., Stulting R.D. Dissatisfaction after multifocal intraocular lens implantation. J. Cataract Refract. Surg. 2009;6:992–997. doi: 10.1016/j.jcrs.2009.01.031. PubMed DOI PMC
Meng J., He W., Rong X., Miao A., Lu Y., Zhu X. Decentration and tilt of plate-haptic multifocal intraocular lenses in myopic eyes. Eye Vis. 2020;7:17. doi: 10.1186/s40662-020-00186-3. PubMed DOI PMC
Ashena Z., Maqsood S., Ahmed S.N., Nanavaty M.A. Effect of Intraocular Lens Tilt and Decentration on Visual Acuity, Dysphotopsia and Wavefront Aberrations. Vision. 2020;3:41. doi: 10.3390/vision4030041. PubMed DOI PMC
Hayashi K., Hayashi H. Influence on posterior capsule opacification and visual function of intraocular lens optic material. Am. J. Ophthalmol. 2007;144:195–202. doi: 10.1016/j.ajo.2007.04.044. PubMed DOI
Nishi O., Yamamoto N., Nishi K., Nishi Y. Contact inhibition of migrating lens epithelial cells at the capsuler bend created by a sharp-edged intraocular lens after cataract surgery. J. Cataract Refract. Surg. 2007;33:1065–1070. doi: 10.1016/j.jcrs.2007.02.022. PubMed DOI
Buehl W., Menapace R., Findl O., Neumayer T., Bolz M., Prinz A. Long-term effect of optic edge design in a silicone intraocular lens on posterior capsule opacification. Am. J. Ophthalmol. 2007;143:913–919. doi: 10.1016/j.ajo.2007.02.017. PubMed DOI
Cheng J.W., Wei R.L., Cai J.P., Xi G.L., Zhu H., Li Y., Ma X.Y. Efficacy of different intraocular lens material and optic edge designs in preventing posterior capsular opacification: A meta-analysis. Am. J. Ophthalmol. 2007;143:428–436. doi: 10.1016/j.ajo.2006.11.045. PubMed DOI
Findl O., Buehl W., Bauer P., Sycha T. Interventions for preventing posterior capsule opacification. Cochrane Database Syst. Rev. 2010;17:CD003738. doi: 10.1002/14651858.CD003738.pub3. PubMed DOI
Wormstone I.M., Wormstone Y.M., Smith A.J.O., Eldred J.A. Posterior capsule opacification: What’s in the bag? Prog. Retin. Eye Res. 2021;82:100905. doi: 10.1016/j.preteyeres.2020.100905. PubMed DOI
Bachernegg A., Rückl T., Strohmaier C., Jell G., Grabner G., Dexl A.K. Vector Analysis, Rotational Stability, and Visual Outcome after Implantation of a New Aspheric Toric IOL. J. Refract. Surg. 2015;8:513–520. doi: 10.3928/1081597X-20150727-01. PubMed DOI
Győry J.F. Long-term evaluation of contrast sensitivity prior to and after the implantation of the Liberty 677MY trifocal intraocular lens; Proceedings of the 37th ESCRS Congress; Paris, France. 14–18 September 2019; Abstract Number FP-298695.
Law E.M., Aggarwal R.K., Buckhurst H., Kasaby H.E., Marsden J., Shum G., Buckhurst P.J. Visual function and subjective perception of vision after bilateral implantation of monofocal and multifocal IOLs: A randomized controlled trial. J. Cataract Refract. Surg. 2020;7:1020–1029. doi: 10.1097/j.jcrs.0000000000000210. PubMed DOI