Fitness consequences of hybridization in a predominantly selfing species: insights into the role of dominance and epistatic incompatibilities

. 2021 Oct ; 127 (4) : 393-400. [epub] 20210807

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34365470
Odkazy

PubMed 34365470
PubMed Central PMC8478955
DOI 10.1038/s41437-021-00465-2
PII: 10.1038/s41437-021-00465-2
Knihovny.cz E-zdroje

Studying the consequences of hybridization on plant performance is insightful to understand the adaptive potential of populations, notably at local scales. Due to reduced effective recombination, predominantly selfing species are organized in highly homozygous multi-locus-genotypes (or lines) that accumulate genetic differentiation both among- and within-populations. This high level of homozygosity facilitates the dissection of the genetic basis of hybrid performance in highly selfing species, which gives insights into the mechanisms of reproductive isolation between lines. Here, we explored the fitness consequences of hybridization events between natural inbred lines of the predominantly selfing species Medicago truncatula, at both within- and among-populations scales. We found that hybridization has opposite effects pending on studied fitness proxies, with dry mass showing heterosis, and seed production showing outbreeding depression. Although we found significant patterns of heterosis and outbreeding depression, they did not differ significantly for within- compared to among-population crosses. Family-based analyses allowed us to determine that hybrid differentiation was mostly due to dominance and epistasis. Dominance and/or dominant epistatic interactions increased dry mass, while decreasing seed production, and recessive epistatic interactions mostly had a positive effect on both fitness proxies. Our results illustrate how genetic incompatibilities can accumulate at a very local scale among multi-locus-genotypes, and how non-additive genetic effects contribute to heterosis and outbreeding depression.

Zobrazit více v PubMed

Abu Awad D, Roze D. Effects of partial selfing on the equilibrium genetic variance, mutation load, and inbreeding depression under stabilizing selection. Evolution. 2018;72:751–769. doi: 10.1111/evo.13449. PubMed DOI

Barrett SCH, Arunkumar R, Wright SI. The demography and population genomics of evolutionary transitions to self-fertilization in plants. Philos Trans R Soc B: Biol Sci. 2014;369:20130344. doi: 10.1098/rstb.2013.0344. PubMed DOI PMC

Barrett SCH, Harder LD, Worley AC. The comparative biology of pollination and mating in flowering plants. Philos Trans R Soc Lond Ser B: Biol Sci. 1996;351:1271–1280. doi: 10.1098/rstb.1996.0110. DOI

Barth S, Busimi AK, Utz HF, Melchinger AE. Heterosis for biomass yield and related traits in five hybrids of Arabidopsis thaliana L. Heynh. Heredity. 2003;91:36–42. doi: 10.1038/sj.hdy.6800276. PubMed DOI

Burnham KP, Anderson DR (2002). A practical information-theoretic approach. Model Selec Multimodel Infer 2.

Charlesworth B. Evolutionary Rates in Partially Self-Fertilizing Species. Am Naturalist. 1992;140:126–148. doi: 10.1086/285406. PubMed DOI

Charlesworth D, Charlesworth B. Quantitative genetics in plants: the effect of the breeding system on genetic variability. Evolution. 1995;49:911–920. doi: 10.1111/j.1558-5646.1995.tb02326.x. PubMed DOI

Charlesworth D, Willis JH. The genetics of inbreeding depression. Nat Rev Genet. 2009;10:783–796. doi: 10.1038/nrg2664. PubMed DOI

Cho L-H, Yoon J, An G. The control of flowering time by environmental factors. Plant J. 2017;90:708–719. doi: 10.1111/tpj.13461. PubMed DOI

Clo J, Gay L, Ronfort J. How does selfing affect the genetic variance of quantitative traits? An updated meta-analysis on empirical results in angiosperm species. Evolution. 2019;73:1578–1590. doi: 10.1111/evo.13789. PubMed DOI

Clo J, Opedal ØH (2021). Genetics of quantitative traits with dominance under stabilizing and directional selection in partially selfing species. Evolution https://onlinelibrary.wiley.com/doi/abs/10.1111/evo.14304 PubMed DOI

Clo J, Ronfort J, Abu Awad D. Hidden genetic variance contributes to increase the short-term adaptive potential of selfing populations. J Evolut Biol. 2020;33:1203–1215. doi: 10.1111/jeb.13660. PubMed DOI

Coyne JA, Orr HA. Speciation. Sunderland, MA: Sinauer Associates; 2004.

Crow JF. Alternative hypotheses of hybrid vigor. Genetics. 1948;33:477. doi: 10.1093/genetics/33.5.477. PubMed DOI PMC

Dagilis AJ, Kirkpatrick M, Bolnick DI. The evolution of hybrid fitness during speciation. PLoS Genet. 2019;15:e1008125. doi: 10.1371/journal.pgen.1008125. PubMed DOI PMC

Demuth JP, Wade MJ. On the Theoretical and Empirical Framework for Studying Genetic Interactions within and among Species. Am Naturalist. 2005;165:524–536. doi: 10.1086/429276. PubMed DOI

Dobzhansky T. Genetics and the origin of species. New York, NY: Columbia Univ. Press; 1937. p. 364.

Dolgin ES, Charlesworth B, Baird SE, Cutter AD. Inbreeding and Outbreeding Depression in Caenorhabditis Nematodes. Evolution. 2007;61:1339–1352. doi: 10.1111/j.1558-5646.2007.00118.x. PubMed DOI

Escobar JS, Cenci A, Bolognini J, Haudry A, Laurent S, David J, et al. An integrative test of the dead-end hypothesis of selfing evolution in Triticeae (Poaceae) Evolution. 2010;64:2855–2872. PubMed

Fitzpatrick BM. Hybrid dysfunction: population genetic and quantitative genetic perspectives. Am Naturalist. 2008;171:491–498. doi: 10.1086/528991. PubMed DOI

Gimond C, Jovelin R, Han S, Ferrari C, Cutter AD, Braendle C. Outbreeding Depression with Low Genetic Variation in Selfing Caenorhabditis Nematodes. Evolution. 2013;67:3087–3101. doi: 10.1111/evo.12203. PubMed DOI

Glémin S. How are deleterious mutations purged? Drift versus nonrandom mating. Evolution. 2003;57:2678–2687. doi: 10.1111/j.0014-3820.2003.tb01512.x. PubMed DOI

Glémin S, Ronfort J. Adaptation and maladaptation in selfing and outcrossing species: new mutations versus standing variation. Evolution. 2013;67:225–240. doi: 10.1111/j.1558-5646.2012.01778.x. PubMed DOI

Goldberg EE, Kohn JR, Lande R, Robertson KA, Smith SA, Igić B. Species selection maintains self-incompatibility. Science. 2010;330:493–495. doi: 10.1126/science.1194513. PubMed DOI

Harkness A, Brandvain Y, Goldberg EE. The evolutionary response of mating system to heterosis. J Evolut Biol. 2019;32:476–490. doi: 10.1111/jeb.13430. PubMed DOI

Husband BC, Schemske DW. Evolution of the magnitude and timing of inbreeding depression in plants. Evolution. 1996;50:54–70. doi: 10.1111/j.1558-5646.1996.tb04472.x. PubMed DOI

Igic B, Busch JW. Is self-fertilization an evolutionary dead end? N Phytologist. 2013;198:386–397. doi: 10.1111/nph.12182. PubMed DOI

Johansen-Morris AD, Latta RG. Fitness consequences of hybridization between ecotypes of Avena barbata: hybrid breakdown, hybrid vigor, and transgressive segregation. Evolution. 2006;60:1585–1595. doi: 10.1111/j.0014-3820.2006.tb00503.x. PubMed DOI

Jullien M, Navascués M, Ronfort J, Loridon K, Gay L. Structure of multilocus genetic diversity in predominantly selfing populations. Heredity. 2019;123:176–191. doi: 10.1038/s41437-019-0182-6. PubMed DOI PMC

Jullien M, Ronfort J, Gay L. How and when does outcrossing occur in the predominantly selfing species Medicago truncatula? Front Plant Sci. 2021;12:127. doi: 10.3389/fpls.2021.619154. PubMed DOI PMC

Kimura M, Maruyama T, Crow JF. The mutation load in small populations. Genetics. 1963;48:1303. doi: 10.1093/genetics/48.10.1303. PubMed DOI PMC

Kirkpatrick M, Barton N. Chromosome inversions, local adaptation and speciation. Genetics. 2006;173:419–434. doi: 10.1534/genetics.105.047985. PubMed DOI PMC

Lande R. The fixation of chromosomal rearrangements in a subdivided population with local extinction and colonization. Heredity. 1985;54:323–332. doi: 10.1038/hdy.1985.43. PubMed DOI

Lande R, Porcher E. Maintenance of quantitative genetic variance under partial self-fertilization, with implications for evolution of selfing. Genetics. 2015;200:891–906. doi: 10.1534/genetics.115.176693. PubMed DOI PMC

Lande R, Schemske DW. The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models. Evolution. 1985;39:24–40. PubMed

Li Y, van Kleunen M, Stift M. Sibling competition does not magnify inbreeding depression in North American Arabidopsis lyrata. Heredity. 2019;123:723–732. doi: 10.1038/s41437-019-0268-1. PubMed DOI PMC

Lynch M. The genetic interpretation of inbreeding depression and outbreeding depression. Evolution. 1991;45:622–629. doi: 10.1111/j.1558-5646.1991.tb04333.x. PubMed DOI

Monnahan PJ, Kelly JK (2015) Epistasis is a major determinant of the additive genetic variance in Mimulus guttatus. PLoS Genet 11:e1005201 PubMed PMC

Nasrallah ME, Yogeeswaran K, Snyder S, Nasrallah JB. Arabidopsis species hybrids in the study of species differences and evolution of amphiploidy in plants. Plant Physiol. 2000;124:1605–1614. doi: 10.1104/pp.124.4.1605. PubMed DOI PMC

Oakley CG, Ågren J, Schemske DW. Heterosis and outbreeding depression in crosses between natural populations of Arabidopsis thaliana. Heredity. 2015;115:73. doi: 10.1038/hdy.2015.18. PubMed DOI PMC

Rhode JM, Cruzan MB. Contributions of Heterosis and Epistasis to Hybrid Fitness. Am Naturalist. 2005;166:E124–E139. doi: 10.1086/491798. PubMed DOI

Schierup MH, Christiansen FB. Inbreeding depression and outbreeding depression in plants. Heredity. 1996;77:461–468. doi: 10.1038/hdy.1996.172. DOI

Siol M, Prosperi JM, Bonnin I, Ronfort J. How multilocus genotypic pattern helps to understand the history of selfing populations: a case study in Medicago truncatula. Heredity. 2008;100:517. doi: 10.1038/hdy.2008.5. PubMed DOI

Stebbins GL (1957) Self fertilization and population variability in the higher plants. Amer Nat 91:337–354

Takebayashi N, Morrell PL. Is self-fertilization an evolutionary dead end? Revisiting an old hypothesis with genetic theories and a macroevolutionary approach. Am J Bot. 2001;88:1143–1150. doi: 10.2307/3558325. PubMed DOI

Vasseur F, Fouqueau L, De Vienne D, Nidelet T, Violle C, Weigel D. Nonlinear phenotypic variation uncovers the emergence of heterosis in Arabidopsis thaliana. PLoS Biol. 2019;17:e3000214. doi: 10.1371/journal.pbio.3000214. PubMed DOI PMC

Vasseur F, Fouqueau L, de Vienne D, Nidelet T, Violle C, Weigel D. Nonlinear phenotypic variation uncovers the emergence of heterosis in Arabidopsis thaliana. PLoS Biol. 2019;17:e3000214. doi: 10.1371/journal.pbio.3000214. PubMed DOI PMC

Volis S, Shulgina I, Zaretsky M, Koren O. Epistasis in natural populations of a predominantly selfing plant. Heredity. 2010;106:300. doi: 10.1038/hdy.2010.79. PubMed DOI PMC

Winn AA, Elle E, Kalisz S, Cheptou P-O, Eckert CG, Goodwillie C, et al. Analysis of inbreeding depression in mixed-mating plants provides evidence for selective interference and stable mixed mating. Evolution. 2011;65:3339–3359. doi: 10.1111/j.1558-5646.2011.01462.x. PubMed DOI

Wright SI, Kalisz S, Slotte T. Evolutionary consequences of self-fertilization in plants. Proc R Soc B. 2013;280:20130133. doi: 10.1098/rspb.2013.0133. PubMed DOI PMC

Younginger BS, Sirová D, Cruzan MB, Ballhorn DJ. Is biomass a reliable estimate of plant fitness? Appl Plant Sci. 2017;5:1600094. doi: 10.3732/apps.1600094. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...