Light-Induced Migration of Spin Defects in TiO2 Nanosystems and their Contribution to the H2 Evolution Catalysis from Water
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
IGA_PrF_2021_003
Palacký University
CZ.02.1.01/0.0/0.0/17_048/0007323
ERDF/ESF project "Development of pre-applied research in nanotechnology and biotechnology"
CZ.02.1.01/0.0/0.0/16_019/0000754
ERDF/ESF project "Nano4Future"
20-17636S
Czech Science Foundation (GACR)
LL1903
Ministry of Education, Youth and Sports
CZ.02.1.01/0.0/0.0/15_003/0000416
Operational Programme Research, Development and Education - European Regional Development Fund
Ministry of Education, Youth and Sports of the Czech Republic
- Keywords
- EPR spectroscopy, H2 production, photocatalysis, titanium dioxide, water splitting,
- Publication type
- Journal Article MeSH
The photocatalytic activity for H2 production from water, without presence of hole scavengers, of thermally reduced TiO2 nanoparticles (H-500, H-700) and neat anatase were followed by in-situ continuous-wave light-induced electron paramagnetic resonance technique (CW-LEPR), in order to correlate the H2 evolution rates with the electronic fingerprints of the photoexcited systems. Under UV irradiation, photoexcited electrons moved from the deep lattice towards the superficially exposed Ti sites. These photogenerated redox sites mediated (e- +h+ ) recombination and were the crucial electronic factor affecting catalysis. In the best-performant system (H-500), a synergic combination of mobile electrons was observed, which dynamically created diverse types of Ti3+ sites, including interstitial Ti3+ , and singly ionized electrons trapped in oxygen vacancies (VO . ). The interplay of these species fed successfully surface exposed Ti4+ sites, which became a catalytically active, fast reacting Ti4+ ⇄Ti3+ state that was key for the H2 evolution process.
See more in PubMed
Q. Wang, L. Zhan, Sci. Total Environ. 2019, 692, 529-545.
P. A. Østergaard, N. Duic, Y. Noorollahi, H. Mikulcic, S. Kalogirou, Renewable Energy 2020, 146, 2430-2437.
M. Yu, K. Wang, H. Vredenburg, Int. J. Hydrogen Energy 2021, 46, 21261-21273.
S. Chen, T. Takata, K. Domen, Nat. Rev. Mater. 2017, 2, 17050.
A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253-278.
T. Tsuyoshi, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, K. Domen, Nature 2020, 581, 411.
A. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev. 1995, 95,735-758.
F. De Angelis, C. Di Valentin, S. Fantacci, A. Vittadini, A. Selloni, Chem. Rev. 2014, 114, 19, 9708-9753.
H. Xiong, L. Wu, Y. Liu, T. Gao, K. Li, Y. Long, R. Zhang, L. Zhang, Z.-A. Qiao, Q. Huo, X. Ge, S. Song, H. Zhang, Adv. Eng. Mater. 2019, 9, 1901634.
T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 2014, 43, 7520-7535.
M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O'shea, M. H. Entezari, D. D. Dionysiou, Appl. Catal. B 2012, 125, 331-349.
M. Karnahl, E. Mejía, N. Rockstroh, S. Tschierlei, S.-P. Luo, K. Grabow, A. Kruth, V. Brüser, H. Junge, S. Lochbrunner, M. Beller, ChemCatChem 2013, 6, 82-86.
J. B. Priebe, J. Radnik, A. J. J. Lennox, M.-M. Pohl, M. Karnahl, D. Hollmann, K. Grabow, U. Bentrup, H. Junge, M. Beller, A. Brückner, ACS Catal. 2015, 5, 2137-2148.
A. Selloni, Handbook of Materials Modeling: Applications: Current and Emerging Materials, Springer International Publishing, 2020, pp. 29-51.
M. Ni, M. K. H. Leung, D. Y. C. Leung, K. Sumathy, Renewable Sustainable Energy Rev. 2007,11, 401-425.
J. Cai, J. Shen, X. Zhang, Y. H. Ng, J. Huang, W. Guo, C. Lin, Y. Lai, Small Methods 2019, 3, 1800184.
R. Singh, S. Dutta, Fuel 2018, 220, 607-620.
Q. Guo, C. Zhou, Z. Ma, X. Yang, Adv. Mater. 2019, 31, 1901997.
C. Franchini, M. Reticcioli, M. Setvin, U. Diebold, Nat. Rev. Mater. 2021, 6, 560-586.
D. P. Colombo Jr., K. A. Roussel, J. Saeh, D. E. Skinner, J. J. Cavaleri, R. M. Bowman, Chem. Phys. Lett. 1995, 232, 207-214.
D. E. Skinner, D. P. Colombo Jr., J. J. Cavaleri, R. M. Bowman, J. Phys. Chem. 1995, 99, 7853-7856.
N. Serpone, D. Lawless, R. Khairutdinov, E. Pelizetti, J. Phys. Chem. 1995, 99, 16655-16661.
R. F. Howe, M. Grätzel, J. Phys. Chem. 1985, 89, 4495-4499.
M. Grätzel, A. J. Frank, J. Phys. Chem. 1982, 86, 2964-2967.
R. Qian, H. Zong, J. Schneider, G. Zhou, T. Zhao, Y. Li, J. Yang, D. W. Bahnemann, J. H. Pan, Catal. Today 2019, 335, 78-90.
F. Pellegrino, F. Sordello, M. Minella, C. Minero, V. Maurino, Catalysts 2019, 9, 32.
X. Zou, Y. Zhang, Chem. Soc. Rev. 2015, 44, 5148-5180.
H. Eidsvåg, S. Bentouba, P. Vajeeston, S. Yohi, D. Velauthapillai, Molecules 2021, 26, 1687.
S. Hejazi, S. Mohajernia, Y. Wu, P. Andryskova, G. Zoppellaro, I. Hwang, O. Tomanec, R. Zboril, P. Schmuki, Electrochem. Commun. 2019, 98, 82-86.
S. Qin, Z. Badura, N. Denisov, O. Tomanec, S. Mohajernia, N. Liu, S. Kment, G. Zoppellaro, P. Schmuki, Electrochem. Commun. 2021,122, 106909.
S. Hejazi, S. Mohajernia, B. Osuagwu, G. Zoppellaro, P. Andryskova, O. Tomanec, S. Kment, R. Zbořil, P. Schmuki, Adv. Mater. 2020, 32, 1908505.
A. Meng, L. Zhang, B. Cheng, J. Yu, Adv. Mater. 2019, 31, 1807660.
M. Cargnello, T. Montini, S. Y. Smolin, J. B. Priebe, J. Delgado, J. Juan, V. V. T. Doan-Nguyen, V. T. Vicky, I. S. McKay, J. A. Schwalbe, M.-M. Pohl, T. R. Gordon, Y. Lu, J. B. Baxter, A. Brueckner, P. Fornasiero, C. B. Murray, Proc. Natl. Acad. Sci. USA 2016, 113, 3966-3971.
G. L. Chiarello, M. V. Dozzi, E. Selli, J. Eng. Chem. 2017, 26, 250-258.
S. Selcuk, X. Zhao, A. Selloni, Nat. Mater. 2018, 17, 923-928.
Q. Yang, L. Dong, R. Su, B. Hu, Z. Wang, Y. Jin, Y. Wang, F. Besenbacher, M. Dong, Appl. Mater. Res. 2019, 17, 159-182.
N. Liu, S. Mohajernia, N. T. Nguyen, S. Hejazi, F. Plass, A. Kahnt, T. Yokosawa, A. Osvet, E. Spiecker, D. M. Guldi, P. Schmuki, ChemSusChem 2020, 13, 4937-4944.
S. Mohajernia, P. Andryskova, G. Zoppellaro, S. Hejazi, S. Kment, R. Zboril, J. Schmidt, P. Schmuki, J. Mater. Chem. A 2020, 8,1432-1442.
N. Liu, C. Schneider, D. Freitag, U. Venkatesan, V. R. R. Marthala, M. Hartmann, B. Winter, E. Spiecker, A. Osvet, E. M. Zolnhofer, K. Meyer, T. Nakajima, X. Zhou, P. Schmuki, Angew. Chem. Int. Ed. 2014, 53, 14201-14205;
Angew. Chem. 2014, 126, 14425-14429.
X. Chen, L. Liu, F. Huang, Chem. Soc. Rev. 2015, 44,1861-1885.
A. Naldoni, M. Altomare, G. Zoppellaro, N. Liu, Š. Kment, R. Zbořil, P. Schmuki, ACS Catal. 2019, 9, 345-364.
X. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science 2011, 331, 746-750.
A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C. L. Bianchi, R. Psaro, V. Dal Santo, J. Am. Chem. Soc. 2012,134, 7600-7603.
H. Song, C. Li, Z. Lou, Z. Ye, L. Zhu, ACS Sustainable Chem. Eng. 2017, 5, 8982-8987.
S. Mohajernia, S. Hejazi, A. Mazare, N. T. Nguyen, P. Schmuki, Chem. Eur. J. 2017, 23, 12406-12411.
S. A. Bonke, T. Risse, A. Schnegg, A. Brückner, Nat. Rev. Methods Primers 2021, 1, 33.
C. Di Valentin, D. Ricci, G. Pacchioni, M. Chiesa, M. C. Paganini, E. Giamello, Surf. Sci. 2002, 521, 104-116;
S. Livraghi, M. Chiesa, M. C. Paganini, E. Giamello, J. Phys. Chem. C 2011, 115, 51, 25413-25421;
C. Gionco, S. Livraghi, S. Maurelli, E. Giamello, S. Tosoni, C. Di Valentin, G. Pacchioni, Chem. Mater. 2015, 27, 3936-3945.
Y. Nosaka, A. Y. Nosaka, Chem. Rev. 2017, 117, 11302-11336.
T. Su, Y. Yang, Y. Na, R. Fan, L. Li, L. Wei, B. Yang, W. Cao, ACS Appl. Mater. Interfaces 2015, 7, 3754-3763.
F. A. Kröger, H. J. Vink, Relations between Concentrations of Imperfections in Crystalline Solids, in Solid State Physics, Vol. 3 (Eds.: F. Seitz, D. Turnbull), Academic Press, New York, 1956, pp. 307-435.
M. Chiesa, M. C. Paganini, S. Livraghi, E. Giamello, Phys. Chem. Chem. Phys. 2013, 15, 9435-9447;
S. Jayashree, M. Ashokkumar, Catalysts 2018, 8, 601.
W.-J. Yin, B. Wen, C. Zhou, A. Selloni, L.-M. Liu, Surf. Sci. Rep. 2018, 73, 58-82.
X. Pan, M.-Q. Yang, X. Fu, N. Zhang, Y.-J. Xu, Nanoscale 2013, 5, 3601-3614;
S. K. Cushing, F. Meng, J. Zhang, B. Ding, C. K. Chen, C.-J. Chen, R.-S. Liu, A. D. Bristow, J. Bright, P. Zheng, N. Wu, ACS Catal. 2017, 7, 1742-1748.
R. Fernández-Climent, S Giménez, M. García-Tecedo, Sustain. Energy Fuels 2020, 4, 5916-5926.
C. Ni, Y. Li, X. Meng, S. Liu, S. Luo, J. Guan, B. Jian, Chem. Eng. J. 2021, 411, 128485.
R. Jia, Y. Wang, C. Wang, Y. Ling, Y. Yu, B. Zhang, ACS Catal. 2020, 10, 3533-3540.
U. Aschauer, Y. He, H. Cheng, S.-C. Li, U. Diebold, A. Selloni, J. Phys. Chem. C 2010, 114, 1278-1284.
M. Aono, R. R. Hasiguti, Phys. Rev. B 1993, 48, 12406-12414.
V. M. Khomenko, K. Langer, H. Rager, A. Fett, Phys. Chem. Miner. 1998, 25, 338-346.
C. Di Valentin, G. Pacchioni, A. Selloni, J. Phys. Chem. C 2009, 113, 20543-20552;
E. Finazzi, C. Di Valentin, G. Pacchioni, J. Phys. Chem. C 2009, 113, 3382-3385.
M. A. Henderson, Surf. Sci. Rep. 2011, 66, 185-297.
F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, P. Feng, J. Am. Chem. Soc. 2010, 132, 11856-11857.
B. Santara, P. K. Giri, K. Imakita, M. Fujii, J. Phys. Chem. C 2013, 117, 23402-23411.