An approach to assess stress in response to drive hunts using cortisol levels of wild boar (Sus scrofa)

. 2021 Aug 12 ; 11 (1) : 16381. [epub] 20210812

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34385546
Odkazy

PubMed 34385546
PubMed Central PMC8361105
DOI 10.1038/s41598-021-95927-2
PII: 10.1038/s41598-021-95927-2
Knihovny.cz E-zdroje

Hunting can easily be linked to stress in wildlife. Drive hunts performed two to three times in one area during the respective hunting period, are thought to decrease the pressure hunting places on wildlife. Nevertheless, the expression of cortisol-one of the main mammalian stress hormones-is considered to have negative impacts on animals' well-being if expressed excessively, which may occur during some (especially repeated) hunting events. We explored the effect of drive hunts on cortisol levels in wild boar in Lower Saxony, Germany, compared these cortisol levels to reference values given by a similar study, and investigated the effect of age, sex, and pregnancy. Blood collected from wild boar shot on drive hunts was analysed using a radioimmunoassay. As expected, we observed elevated cortisol levels in all samples, however, we still found significant differences between age groups and sexes, as well as an influence of pregnancy on cortisol levels. The effect of drive hunts on cortisol levels appears to be weaker than predicted, while the effects of other variables, such as sex, are distinct. Only half of the evaluated samples showed explicitly increased cortisol levels and no significant differences were found between sampling months and locations. Group living animals and pregnant females showed significantly higher cortisol levels. The impact of hunting is measurable but is masked by natural effects such as pregnancy. Thus, we need more information on stress levels in game species.

Zobrazit více v PubMed

Palme R. Monitoring stress hormone metabolites as a useful, non-invasive tool for welfare assessment in farm animals. Anim. Welf. 2012;21:331–337. doi: 10.7120/09627286.21.3.331. DOI

Jankord R, Herman JP. Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Ann. N. Y. Acad. Sci. 2008;1148:64–73. doi: 10.1196/annals.1410.012. PubMed DOI PMC

Romero LM. Physiological stress in ecology: Lessons from biomedical research. Trends Ecol. Evol. 2004;19:249–255. doi: 10.1016/j.tree.2004.03.008. PubMed DOI

Haase CG, Long AK, Gillooly JF. Energetics of stress: Linking plasma cortisol levels to metabolic rate in mammals. Biol. Lett. 2016;12:20150867. doi: 10.1098/rsbl.2015.0867. PubMed DOI PMC

Selye H. A syndrome produced by diverse nocuous agents. Nature. 1936;1936:32. doi: 10.1038/138032a0. PubMed DOI

Fink G. Stress Science: Neuroendocrinology. Academic Press, Elsevier Science; 2010.

Hing S, Narayan EJ, Thompson RCA, Godfrey SS. The relationship between physiological stress and wildlife disease: Consequences for health and conservation. Wildl. Res. 2016;43:51. doi: 10.1071/WR15183. DOI

Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res. 2002;53:865–871. doi: 10.1016/S0022-3999(02)00429-4. PubMed DOI

Tryphonopoulos PD, Letourneau N, Azar R. Approaches to salivary cortisol collection and analysis in infants. Biol. Res. Nurs. 2014;16:398–408. doi: 10.1177/1099800413507128. PubMed DOI

Palme R. Non-invasive measurement of glucocorticoids: Advances and problems. Physiol. Behav. 2019;199:229–243. doi: 10.1016/j.physbeh.2018.11.021. PubMed DOI

Russell E, Koren G, Rieder M, Van Uum S. Hair cortisol as a biological marker of chronic stress: Current status, future directions and unanswered questions. Psychoneuroendocrinology. 2012;37:589–601. doi: 10.1016/j.psyneuen.2011.09.009. PubMed DOI

McEwen BS. Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. Eur. J. Pharmacol. 2008;583:174–185. doi: 10.1016/j.ejphar.2007.11.071. PubMed DOI PMC

O’Connor EA, et al. The impact of chronic environmental stressors on growing pigs, Sus scrofa (Part 1): Stress physiology, production and play behaviour. Animal. 2010;4:1899–1909. doi: 10.1017/S1751731110001072. PubMed DOI

Kadarmideen HN, Janss LLG. Population and systems genetics analyses of cortisol in pigs divergently selected for stress. Physiol. Genomics. 2007;29:57–65. doi: 10.1152/physiolgenomics.00144.2006. PubMed DOI

Romano MC, et al. Stress in wildlife species: Noninvasive monitoring of glucocorticoids. NeuroImmunoModulation. 2010;17:209–212. doi: 10.1159/000258726. PubMed DOI

Sales LP, et al. Niche conservatism and the invasive potential of the wild boar. J. Anim. Ecol. 2017;86:1214–1223. doi: 10.1111/1365-2656.12721. PubMed DOI

Briedermann L. Schwarzwild. Franckh-Kosmos Verlags-GmnH & Co. KG; 2009.

Keuling O, et al. Eurasian wild boar Sus scrofa (Linnaeus, 1758) In: Melletti M, Meijaard E, et al., editors. Ecology, Conservation and Management of Wild Pigs and Peccaries. Cambridge University Press; 2018. pp. 202–233.

Niedersächsisches Ministerium für Ernährung, Landwirtschaft und Verbraucherschutz. Aktuelle Jagdzeiten in Niedersachsen (konsolidierte Fassung) Stand: 25. Januar 2021 inkl. Verordnung zur Durchführung des Nieders. Jagdgesetzes (DVO-NJagdG) vom 23. Mai 2008 (Nds. GVBl. S. 194), zuletzt geändert durch Verordnung vom 18. Januar 2021 (Nds. GVBl. S. 24). (2021). https://www.ml.niedersachsen.de/download/163729/Aktuelle_Jagdzeiten_in_Niedersachsen_Stand_25.01.2021_nicht_vollstaendig_barrierefrei_.pdf. Accessed 01 June 2021.

Casas-Díaz E, et al. Hematologic and biochemical reference intervals for Wild Boar (Sus scrofa) captured by cage trap. Vet. Clin. Pathol. 2015;44:215–222. doi: 10.1111/vcp.12250. PubMed DOI

Gentsch RP, Kjellander P, Röken BO. Cortisol response of wild ungulates to trauma situations: Hunting is not necessarily the worst stressor. Eur. J. Wildl. Res. 2018;64:11. doi: 10.1007/s10344-018-1171-4. DOI

Adcock SJJ, Martin GM, Walsh CJ. The stress response and exploratory behaviour in Yucatan minipigs (Sus scrofa): Relations to sex and social rank. Physiol. Behav. 2015;152:194–202. doi: 10.1016/j.physbeh.2015.09.033. PubMed DOI

Bratton SP. The effect of the European wild boar (Sus scrofa) on gray beech forest in the great smokey mountains. Ecology. 1975;56:1356–1366. doi: 10.2307/1934702. DOI

Singer FJ, Swank WT, Clebsh EEC. The effects of wild pig rooting in a deciduous forest. J. Wildl. Manage. 1984;48:464–473. doi: 10.2307/3801179. DOI

Wlazelko M, Labudzki L. Über Nahrungskomponenten und trophische Stellung des Schwarzwildes im Forschungsgebiet Zielonka. Z. Jagdwiss. 1992;38:81–87.

Killian G, Miller L, Rhyan J, Doten H. Immunocontraception of Florida feral swine with a single-dose GnRH vaccine. Am. J. Reprod. Immunol. 2006;55:378–384. doi: 10.1111/j.1600-0897.2006.00379.x. PubMed DOI

Gortázar C, Ferroglio E, Höfle U, Frölich K, Vicente J. Diseases shared between wildlife and livestock: A European perspective. Eur. J. Wildl. Res. 2007;53:241–256. doi: 10.1007/s10344-007-0098-y. DOI

Gräber, R., Strauß, E. & Johanshon, S.

Wölfel, H.

Eisenbarth E, Ophoven E. Bewegungsjagd auf Schalenwild. Franckh-Kosmos Verlags-GmbH & Co.; 2002.

Böhm E. Drückjagd auf Sauen. Neumann-Neudamm; 2004.

Bradshaw EL, Bateson P. Welfare implications of culling red deer (Cervus elaphus) Anim. Welf. 2000;9:3–24.

Sheriff MJ, Dantzer B, Delehanty B, Palme R, Boonstra R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia. 2011;166:869–887. doi: 10.1007/s00442-011-1943-y. PubMed DOI

Hellhammer DH, Wüst S, Kudielka BM. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology. 2009;34:163–171. doi: 10.1016/j.psyneuen.2008.10.026. PubMed DOI

Palme R, Rettenbacher S, Touma C, El-Bahr SM, Möstl E. Stress hormones in mammals and birds: Comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples. Ann. N. Y. Acad. Sci. 2005;1040:162–171. doi: 10.1196/annals.1327.021. PubMed DOI

Kanitz E, Otten W, Tuchscherer M, Manteuffel G. Effects of prenatal stress on corticosteroid receptors and monoamine concentrations in limbic areas of suckling piglets (Sus scrofa) at different ages. J. Vet. Med. Ser. A. 2003;50:132–139. doi: 10.1046/j.1439-0442.2003.00513.x. PubMed DOI

Campbell EA, et al. Plasma corticotropin-releasing hormone concentrations during pregnancy and parturition. J. Clin. Endocrinol. Metab. 1987;64:1054–1059. doi: 10.1210/jcem-64-5-1054. PubMed DOI

Seth S, Lewis AJ, Galbally M. Perinatal maternal depression and cortisol function in pregnancy and the postpartum period: A systematic literature review. BMC Pregn. Childbirth. 2016;16:124. doi: 10.1186/s12884-016-0915-y. PubMed DOI PMC

Gethöffer F. Reproduktionsparameter und Saisonalität der Fortpflanzung des Wildschweins (Sus scrofa) in drei Untersuchungsgebieten Deutschlands. University of Veterinary Medicine Hannover; 2005.

Frauendorf M, Gethöffer F, Siebert U, Keuling O. The influence of environmental and physiological factors on the litter size of wild boar (Sus scrofa) in an agriculture dominated area in Germany. Sci. Total Environ. 2016;541:877–882. doi: 10.1016/j.scitotenv.2015.09.128. PubMed DOI

Gethöffer F, Sodeikat G, Pohlmeyer K. Reproductive parameters of wild boar (Sus scrofa) in three different parts of Germany. Eur. J. Wildl. Res. 2007;53:287–297. doi: 10.1007/s10344-007-0097-z. DOI

DWD.

Keuling O, Stier N, Roth M. Annual and seasonal space use of different age classes of female wild boar Sus scrofa L. Eur. J. Wildl. Res. 2008;54:403–412. doi: 10.1007/s10344-007-0157-4. DOI

Malmsten A, Jansson G, Lundeheim N, Dalin A-M. The reproductive pattern and potential of free ranging female wild boars (Sus scrofa) in Sweden. Acta Vet. Scand. 2017;59:52. doi: 10.1186/s13028-017-0321-0. PubMed DOI PMC

R Core Team.

Dunn OJ. Multiple comparisons using rank sums. Technometrics. 1964;6:241–252. doi: 10.1080/00401706.1964.10490181. DOI

Ogle, D. H., Wheeler, P. & Dinno, A.

Kassambara, A.

Palme R. Measuring fecal steroids: Guidelines for practical application. Ann. N. Y. Acad. Sci. 2005;1046:75–80. doi: 10.1196/annals.1343.007. PubMed DOI

Cockrem JF. Individual variation in glucocorticoid stress responses in animals. Gen. Comp. Endocrinol. 2013;181:45–58. doi: 10.1016/j.ygcen.2012.11.025. PubMed DOI

Mormède P, et al. Exploration of the hypothalamic-pituitary-adrenal function as a tool to evaluate animal welfare. Physiol. Behav. 2007;92:317–339. doi: 10.1016/j.physbeh.2006.12.003. PubMed DOI

Goymann W. Noninvasive monitoring of hormones in bird droppings: Physiological validation, sampling, extraction, sex differences, and the influence of diet on hormone metabolite levels. Ann. N. Y. Acad. Sci. 2005;1046:35–53. doi: 10.1196/annals.1343.005. PubMed DOI

Guilliams TG, Edwards L. Chronic stress and the HPA axis: Clinical assessment and therapeutic considerations. Stand. 2010;9:1–12.

Merta D, Mocala P, Pomykacz M, Frackowiak W. Autumn-winter diet and fat reserves of wild boars (Sus scrofa) inhabiting forest and forest-farmland environment in south-western Poland. Folia Zool. 2014;63:95–102. doi: 10.25225/fozo.v63.i2.a7.2014. DOI

Poteaux C, et al. Socio-genetic structure and mating system of a wild boar population. J. Zool. 2009;278:116–125. doi: 10.1111/j.1469-7998.2009.00553.x. DOI

Kaminski G, Brandt S, Baubet E, Baudoin C. Life-history patterns in female wild boars (Sus scrofa): Mother–daughter postweaning associations. Can. J. Zool. 2005;83:474–480. doi: 10.1139/z05-019. DOI

Krause J, Ruxton GD. Living in Groups. Oxford Series in Ecology and Evolution. Oxford University Press; 2002.

Kudielka BM, Kirschbaum C. Sex differences in HPA axis responses to stress: A review. Biol. Psychol. 2005;69:113–132. doi: 10.1016/j.biopsycho.2004.11.009. PubMed DOI

Balhara YS, Verma R, Gupta C. Gender differences in stress response: Role of developmental and biological determinants. Ind. Psychiatry J. 2012;20:4. doi: 10.4103/0972-6748.98407. PubMed DOI PMC

Sutherland MA, Rodriguez-Zas SL, Ellis M, Salak-Johnson JL. Breed and age affect baseline immune traits, cortisol, and performance in growing pigs. J. Anim. Sci. 2005;83:2087–2095. doi: 10.2527/2005.8392087x. PubMed DOI

Foury A, et al. Stress hormones, carcass composition and meat quality in Large White × Duroc pigs. Meat Sci. 2005;69:703–707. doi: 10.1016/j.meatsci.2004.11.002. PubMed DOI

Ruis MAW, et al. The circadian rhythm of salivary cortisol in growing pigs: Effects of age, gender, and stress. Physiol. Behav. 1997;62:623–630. doi: 10.1016/S0031-9384(97)00177-7. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The impact of stalking hunt season on long-term stress in big game

. 2024 Dec 04 ; 20 (1) : 549. [epub] 20241204

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...