Polycystin-1 is required for insulin-like growth factor 1-induced cardiomyocyte hypertrophy
Language English Country United States Media electronic-ecollection
Document type Journal Article
Grant support
R25 HL145817
NHLBI NIH HHS - United States
S10 OD010417
NIH HHS - United States
T32 HL007444
NHLBI NIH HHS - United States
PubMed
34407099
PubMed Central
PMC8372926
DOI
10.1371/journal.pone.0255452
PII: PONE-D-20-14880
Knihovny.cz E-resources
- MeSH
- Phosphorylation MeSH
- Gene Knockdown Techniques MeSH
- Insulin-Like Growth Factor I * metabolism MeSH
- Cardiomegaly * metabolism pathology genetics MeSH
- Myocytes, Cardiac * metabolism pathology MeSH
- TRPP Cation Channels * metabolism genetics MeSH
- Rats MeSH
- Cells, Cultured MeSH
- Proto-Oncogene Proteins c-akt metabolism MeSH
- Receptor, IGF Type 1 * metabolism genetics MeSH
- Signal Transduction MeSH
- Protein Tyrosine Phosphatase, Non-Receptor Type 1 metabolism genetics MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Insulin-Like Growth Factor I * MeSH
- TRPP Cation Channels * MeSH
- polycystic kidney disease 1 protein MeSH Browser
- Proto-Oncogene Proteins c-akt MeSH
- Receptor, IGF Type 1 * MeSH
- Protein Tyrosine Phosphatase, Non-Receptor Type 1 MeSH
Cardiac hypertrophy is the result of responses to various physiological or pathological stimuli. Recently, we showed that polycystin-1 participates in cardiomyocyte hypertrophy elicited by pressure overload and mechanical stress. Interestingly, polycystin-1 knockdown does not affect phenylephrine-induced cardiomyocyte hypertrophy, suggesting that the effects of polycystin-1 are stimulus-dependent. In this study, we aimed to identify the role of polycystin-1 in insulin-like growth factor-1 (IGF-1) signaling in cardiomyocytes. Polycystin-1 knockdown completely blunted IGF-1-induced cardiomyocyte hypertrophy. We then investigated the molecular mechanism underlying this result. We found that polycystin-1 silencing impaired the activation of the IGF-1 receptor, Akt, and ERK1/2 elicited by IGF-1. Remarkably, IGF-1-induced IGF-1 receptor, Akt, and ERK1/2 phosphorylations were restored when protein tyrosine phosphatase 1B was inhibited, suggesting that polycystin-1 knockdown deregulates this phosphatase in cardiomyocytes. Moreover, protein tyrosine phosphatase 1B inhibition also restored IGF-1-dependent cardiomyocyte hypertrophy in polycystin-1-deficient cells. Our findings provide the first evidence that polycystin-1 regulates IGF-1-induced cardiomyocyte hypertrophy through a mechanism involving protein tyrosine phosphatase 1B.
See more in PubMed
Shimizu I., Minamino T. Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol. 2016;97:245–62. doi: 10.1016/j.yjmcc.2016.06.001 PubMed DOI
Blaauw E., van Nieuwenhoven F. A., Willemsen P., Delhaas T., Prinzen F. W., Snoeckx L. H., et al.. Stretch-induced hypertrophy of isolated adult rabbit cardiomyocytes. Am J Physiol Heart Circ Physiol. 2010;299:H780–7. doi: 10.1152/ajpheart.00822.2009 PubMed DOI
Duerr R. L., Huang S., Miraliakbar H. R., Clark R., Chien K. R., Ross J. Jr. Insulin-like growth factor-1 enhances ventricular hypertrophy and function during the onset of experimental cardiac failure. J Clin Invest. 1995;95:619–27. doi: 10.1172/JCI117706 PubMed DOI PMC
Ito H., Hiroe M., Hirata Y., Tsujino M., Adachi S., Shichiri M., et al.. Insulin-like growth factor-I induces hypertrophy with enhanced expression of muscle specific genes in cultured rat cardiomyocytes. Circulation. 1993;87:1715–21. doi: 10.1161/01.cir.87.5.1715 PubMed DOI
Rakesh K., Yoo B., Kim I. M., Salazar N., Kim K. S., Rockman H. A. beta-Arrestin-biased agonism of the angiotensin receptor induced by mechanical stress. Sci Signal. 2010;3:ra46. doi: 10.1126/scisignal.2000769 PubMed DOI PMC
Ruwhof C., van der Laarse A. Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc Res. 2000;47:23–37. doi: 10.1016/s0008-6363(00)00076-6 PubMed DOI
Catalucci D., Latronico M. V., Ellingsen O., Condorelli G. Physiological myocardial hypertrophy: how and why? Front Biosci. 2008;13:312–24. doi: 10.2741/2681 PubMed DOI
Foncea R., Andersson M., Ketterman A., Blakesley V., Sapag-Hagar M., Sugden P. H., et al.. Insulin-like growth factor-I rapidly activates multiple signal transduction pathways in cultured rat cardiac myocytes. J Biol Chem. 1997;272:19115–24. doi: 10.1074/jbc.272.31.19115 PubMed DOI
Arroba A. I., Revuelta-Cervantes J., Menes L., Gonzalez-Rodriguez A., Pardo V., de la Villa P., et al.. Loss of protein tyrosine phosphatase 1B increases IGF-I receptor tyrosine phosphorylation but does not rescue retinal defects in IRS2-deficient mice. Invest Ophthalmol Vis Sci. 2013;54:4215–25. doi: 10.1167/iovs.12-11438 PubMed DOI
Buckley D. A., Cheng A., Kiely P. A., Tremblay M. L., O’Connor R. Regulation of insulin-like growth factor type I (IGF-I) receptor kinase activity by protein tyrosine phosphatase 1B (PTP-1B) and enhanced IGF-I-mediated suppression of apoptosis and motility in PTP-1B-deficient fibroblasts. Mol Cell Biol. 2002;22:1998–2010. doi: 10.1128/MCB.22.7.1998-2010.2002 PubMed DOI PMC
Fan G., Lin G., Lucito R., Tonks N. K. Protein-tyrosine phosphatase 1B antagonized signaling by insulin-like growth factor-1 receptor and kinase BRK/PTK6 in ovarian cancer cells. J Biol Chem. 2013;288:24923–34. doi: 10.1074/jbc.M113.482737 PubMed DOI PMC
Bakke J., Haj F. G. Protein-tyrosine phosphatase 1B substrates and metabolic regulation. Semin Cell Dev Biol. 2015;37:58–65. doi: 10.1016/j.semcdb.2014.09.020 PubMed DOI PMC
Chen P. J., Cai S. P., Huang C., Meng X. M., Li J. Protein tyrosine phosphatase 1B (PTP1B): A key regulator and therapeutic target in liver diseases. Toxicology. 2015;337:10–20. doi: 10.1016/j.tox.2015.08.006 PubMed DOI
Kandadi M. R., Panzhinskiy E., Roe N. D., Nair S., Hu D., Sun A. Deletion of protein tyrosine phosphatase 1B rescues against myocardial anomalies in high fat diet-induced obesity: Role of AMPK-dependent autophagy. Biochim Biophys Acta. 2015;1852:299–309. doi: 10.1016/j.bbadis.2014.07.004 PubMed DOI
Gomez E., Vercauteren M., Kurtz B., Ouvrard-Pascaud A., Mulder P., Henry J. P., et al.. Reduction of heart failure by pharmacological inhibition or gene deletion of protein tyrosine phosphatase 1B. J Mol Cell Cardiol. 2012;52:1257–64. doi: 10.1016/j.yjmcc.2012.03.003 PubMed DOI
Pedrozo Z., Criollo A., Battiprolu P. K., Morales C. R., Contreras-Ferrat A., Fernandez C., et al.. Polycystin-1 is a cardiomyocyte mechanosensor that governs L-Type Ca2+ channel protein stability. Circulation. 2015;131:2131–42. doi: 10.1161/CIRCULATIONAHA.114.013537 PubMed DOI PMC
Chapin H. C., Caplan M. J. The cell biology of polycystic kidney disease. J Cell Biol. 2010;191:701–10. doi: 10.1083/jcb.201006173 PubMed DOI PMC
Huan Y., van Adelsberg J. Polycystin-1, the PKD1 gene product, is in a complex containing E-cadherin and the catenins. J Clin Invest. 1999;104:1459–68. doi: 10.1172/JCI5111 PubMed DOI PMC
Xu G. M., Sikaneta T., Sullivan B. M., Zhang Q., Andreucci M., Stehle T., et al.. Polycystin-1 interacts with intermediate filaments. J Biol Chem. 2001;276:46544–52. doi: 10.1074/jbc.M107828200 PubMed DOI
Geng L., Burrow C. R., Li H. P., Wilson P. D. Modification of the composition of polycystin-1 multiprotein complexes by calcium and tyrosine phosphorylation. Biochim Biophys Acta. 2000;1535:21–35. doi: 10.1016/s0925-4439(00)00079-x PubMed DOI
Li Y., Santoso N. G., Yu S., Woodward O. M., Qian F., Guggino W. B. Polycystin-1 interacts with inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling with implications for polycystic kidney disease. J Biol Chem. 2009;284:36431–41. doi: 10.1074/jbc.M109.068916 PubMed DOI PMC
Tahimic C. G., Long R. K., Kubota T., Sun M. Y., Elalieh H., Fong C., et al.. Regulation of ligand and shear stress-induced insulin-like growth factor 1 (IGF1) signaling by the integrin pathway. J Biol Chem. 2016;291:8140–9. doi: 10.1074/jbc.M115.693598 PubMed DOI PMC
Boucher C. A., Ward H. H., Case R. L., Thurston K. S., Li X, Needham A., et al.. Receptor protein tyrosine phosphatases are novel components of a polycystin complex. Biochim Biophys Acta. 2011;1812:1225–38. doi: 10.1016/j.bbadis.2010.11.006 PubMed DOI PMC
Pennanen C., Parra V., Lopez-Crisosto C., Morales P. E., Del Campo A., Gutierrez T., et al.. Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signaling pathway. J Cell Sci. 2014;127:2659–71. doi: 10.1242/jcs.139394 PubMed DOI PMC
Oyarzun A. P., Westermeier F., Pennanen C., Lopez-Crisosto C., Parra V., Sotomayor-Flores C., et al.. FK866 compromises mitochondrial metabolism and adaptive stress responses in cultured cardiomyocytes. Biochem Pharmacol. 2015;98:92–101. doi: 10.1016/j.bcp.2015.08.097 PubMed DOI
Aoki H., Sadoshima J., Izumo S. Myosin light chain kinase mediates sarcomere organization during cardiac hypertrophy in vitro. Nat Med. 2000;6:183–88. doi: 10.1038/72287 PubMed DOI
Carrasco L., Cea P., Rocco P., Pena-Oyarzun D., Rivera-Mejias P., Sotomayor-Flores C., et al.. Role of heterotrimeric G protein and calcium in cardiomyocyte hypertrophy induced by IGF-1. J Cell Biochem. 2014;115:712–20. doi: 10.1002/jcb.24712 PubMed DOI
Ibarra C., Estrada M., Carrasco L., Chiong M., Liberona J. L., Cardenas C., et al.. Insulin-like growth factor-1 induces an inositol 1,4,5-trisphosphate-dependent increase in nuclear and cytosolic calcium in cultured rat cardiac myocytes. J Biol Chem. 2004;279:7554–65. doi: 10.1074/jbc.M311604200 PubMed DOI
Kim S. J., Abdellatif M., Koul S., Crystal G. J. Chronic treatment with insulin-like growth factor I enhances myocyte contraction by upregulation of Akt-SERCA2a signaling pathway. Am J Physiol Heart Circ Physiol. 2008;295:H130–5. doi: 10.1152/ajpheart.00298.2008 PubMed DOI PMC
Buckley D. A., Loughran G., Murphy G., Fennelly C., O’Connor R. Identification of an IGF-1R kinase regulatory phosphatase using the fission yeast Schizosaccharomyces pombe and a GFP tagged IGF-1R in mammalian cells. Mol Pathol. 2002;55:46–54. doi: 10.1136/mp.55.1.46 PubMed DOI PMC
Yao Z., Darowski K., St-Denis N., Wong V., Offensperger F., Villedieu A., et al.. A Global analysis of the receptor tyrosine kinase-protein phosphatase interactome. Mol Cell. 2017;65:347–60. doi: 10.1016/j.molcel.2016.12.004 PubMed DOI PMC
Troncoso R., Ibarra C., Vicencio J. M., Jaimovich E., Lavandero S. New insights into IGF-1 signaling in the heart. Trends Endocrinol Metab. 2014;25:128–37. doi: 10.1016/j.tem.2013.12.002 PubMed DOI
Westermeier F., Bustamante M., Pavez M., Garcia L., Chiong M., Ocaranza M. P., et al.. Novel players in cardioprotection: Insulin like growth factor-1, angiotensin-(1–7) and angiotensin-(1–9). Pharmacol Res. 2015;101:41–55. doi: 10.1016/j.phrs.2015.06.018 PubMed DOI
Ibarra C., Vicencio J. M., Estrada M., Lin Y., Rocco P., Rebellato P., et al.. Local control of nuclear calcium signaling in cardiac myocytes by perinuclear microdomains of sarcolemmal insulin-like growth factor 1 receptors. Circ Res. 2013;112:236–45. doi: 10.1161/CIRCRESAHA.112.273839 PubMed DOI
Boura-Halfon S., Zick Y. Serine kinases of insulin receptor substrate proteins. Vitam Horm. 2009;80:313–49. doi: 10.1016/S0083-6729(08)00612-2 PubMed DOI
Gainullin V. G., Hopp K., Ward C. J., Hommerding C. J., Harris P. C. Polycystin-1 maturation requires polycystin-2 in a dose-dependent manner. J Clin Invest. 2015;125:607–20. doi: 10.1172/JCI76972 PubMed DOI PMC
Criollo A., Altamirano F., Pedrozo Z., Schiattarella G. G., Li D. L., Rivera-Mejías P., et al.. Polycystin-2-dependent control of cardiomyocyte autophagy. J Mol Cell Cardiol. 2018;118:110–21. doi: 10.1016/j.yjmcc.2018.03.002 PubMed DOI
Kaur S., McGlashan S. R., Ward M-L. Evidence of primary cilia in the developing rat heart. Cilia. 2018;7:4. doi: 10.1186/s13630-018-0058-z PubMed DOI PMC
Villalobos E., Criollo A., Schiattarella G. G., Altamirano F., French K. M., May H. I., et al.. Fibroblast primary cilia are required for cardiac fibrosis. Circulation. 2019;139:2342–57. doi: 10.1161/CIRCULATIONAHA.117.028752 PubMed DOI PMC
Altamirano F., Schiattarella G. G., French K. M., Kim S. Y., Engelberger F., Kyrychenko S., et al.. Polycystin-1 assembles with Kv channels to govern cardiomyocyte repolarization and contractility. Circulation. 2019;140:921–36. doi: 10.1161/CIRCULATIONAHA.118.034731 PubMed DOI PMC
Aránguiz P., Romero P., Vásquez F., Flores-Vergara R., Aravena D., Sánchez G., et al.. Polycystin-1 mitigates damage and regulates CTGF expression through AKT activation during cardiac ischemia/reperfusion. Biochim Biophys Acta Mol Basis Dis. 2021;1867:165986. doi: 10.1016/j.bbadis.2020.165986 PubMed DOI
Carver K. C., Piazza T. M., Schuler L. A. Prolactin enhances insulin-like growth factor I receptor phosphorylation by decreasing its association with the tyrosine phosphatase SHP-2 in MCF-7 breast cancer cells. J Biol Chem. 2010;285:8003–12. doi: 10.1074/jbc.M109.066480 PubMed DOI PMC
Parnell S. C., Puri S., Wallace D. P., Calvet J. P. Protein phosphatase-1alpha interacts with and dephosphorylates polycystin-1. PLoS One. 2012;7:e36798. doi: 10.1371/journal.pone.0036798 PubMed DOI PMC
Córdova-Casanova A., Olmedo I., Riquelme J. A., Barrientos G., Sánchez G., Gillette T. G., et al.. Mechanical stretch increases L-type calcium channel stability in cardiomyocytes through a polycystin-1/AKT-dependent mechanism. Biochim Biophys Acta Mol Cell Res. 2018;1865:289–96. doi: 10.1016/j.bbamcr.2017.11.001 PubMed DOI
Ravichandran L. V., Chen H., Li Y., Quon M. J. Phosphorylation of PTP1B at Ser(50) by Akt impairs its ability to dephosphorylate the insulin receptor. Mol Endocrinol. 2001;15:1768–80. doi: 10.1210/mend.15.10.0711 PubMed DOI
Incerpi S., Hsieh M. T., Lin H. Y., Cheng G. Y., De Vito P., Fiore A. M., et al.. Thyroid hormone inhibition in L6 myoblasts of IGF-I-mediated glucose uptake and proliferation: new roles for integrin alphavbeta3. Am J Physiol Cell Physiol. 2014;307:C150–61. doi: 10.1152/ajpcell.00308.2013 PubMed DOI