Influence of variable biochar concentration on yield-scaled nitrous oxide emissions, Wheat yield and nitrogen use efficiency
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
34408252
PubMed Central
PMC8373951
DOI
10.1038/s41598-021-96309-4
PII: 10.1038/s41598-021-96309-4
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
An important source of the destructive greenhouse gas, nitrous oxide (N2O) comes from the use of ammonium based nitrogen (N) fertilizers that release N2O in the incomplete conversion (nitrification) of NH4+ to NO3-1. Biochar has been shown to decrease nitrification rates and N2O emission. However, there is little information from semi-arid environments such as in Pakistan where conditions favor N2O emissions. Therefore, the object was to conduct field experiment to determine the impact of biochar rates in the presence or absence of urea amended soils on yield-scaled N2O emissions, and wheat yield and N use efficiency (NUE). The experiment on wheat (Triticum aestivum L.), had a randomized complete block design with four replications and the treatments: control, sole urea (150 kg N ha-1), 5 Mg biochar ha-1 (B5), 10 Mg biochar ha-1 (B10), urea + B5 or urea + B10. In urea amended soils with B5 or B10 treatments, biochar reduced total N2O emissions by 27 and 35%, respectively, over the sole urea treatment. Urea + B5 or + B10 treatments had 34 and 46% lower levels, respectively, of yield scaled N2O over the sole urea treatment. The B5 and B10 treatments had 24-38%, 9-13%, 12-27% and 35-43%, respectively greater wheat above-ground biomass, grain yield, total N uptake, and NUE, over sole urea. The biochar treatments increased the retention of NH4+ which likely was an important mechanism for reducing N2O by limiting nitrification. These results indicate that amending soils with biochar has potential to mitigate N2O emissions in a semi-arid and at the same time increase wheat productivity.
Department of Agronomy The University of Haripur Khyber Pakhtunkhwa Pakistan
Department of Botany University of Central Punjab Lahore Punjab Pakistan
Department of Plant Pathology The University of Agriculture Peshawar Peshawar Pakistan
Depertment of Plant Protection The University of Agriculture Peshawar Peshawar Pakistan
School of Environment and Natural Resources Ohio State University Columbus Ohio USA
Zobrazit více v PubMed
Lin DX, Fan XH, Hu F, Zhao HT, Luo JF. Ammonia volatilization and nitrogen utilization efficiency in response to urea application in rice fields of the Taihu Lake Region, China. Pedosphere. 2007;17:639–645. doi: 10.1016/S1002-0160(07)60076-9. DOI
Ju XT, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. U. S. A. 2009;106:3041–3046. doi: 10.1073/pnas.0813417106. PubMed DOI PMC
Ding W, et al. Effect of long-term compost and inorganic fertilizer application on background N2O and fertilizer-induced N2O emissions from an intensively cultivated soil. Sci. Total Environ. 2013;465:115–124. doi: 10.1016/j.scitotenv.2012.11.020. PubMed DOI
Galloway JN, et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science. 2008;320:889–892. doi: 10.1126/science.1136674. PubMed DOI
Schlesinger WH. On the fate of anthropogenic nitrogen. Proc. Natl. Acad. Sci. U. S. A. 2009;106:203–208. doi: 10.1073/pnas.0810193105. PubMed DOI PMC
Ravishankara AR, Daniel JS, Portmann RW. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science. 2009;326:123–125. doi: 10.1126/science.1176985. PubMed DOI
IPCC. Climate Change 2007: impacts, adaptation and vulnerability: contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel. Cambridge University Press (2007).
Sanz-Cobena A, Sánchez-Martín L, García-Torres VA. Gaseous emissions of N2O and NO and NO3- leaching from urea applied with urease and nitrification inhibitors to a maize (Zea mays) crop. Agric. Ecosyst. Environ. 2012;149:64–73. doi: 10.1016/j.agee.2011.12.016. DOI
Fowler D, et al. Atmospheric composition change: ecosystems–atmosphere interactions. Atmos. Environ. 2009;43:5193–5267. doi: 10.1016/j.atmosenv.2009.07.068. DOI
Smith KA. Changing views of nitrous oxide emissions from agricultural soil: Key controlling processes and assessment at different spatial scales. Eur. J. Soil Sci. 2017;68:137–155. doi: 10.1111/ejss.12409. DOI
Tian H, et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty. Glob. Chang. Biol. 2019;25:640–659. doi: 10.1111/gcb.14514. PubMed DOI
Jahangir MMR, et al. Reduced tillage with residue retention and nitrogen application rate increase N2O fluxes from irrigated wheat in a subtropical floodplain soil. Agric. Ecosyst. Environ. 2021;306:107194. doi: 10.1016/j.agee.2020.107194. DOI
Galloway, J. Addressing the ‘nitrogen cascade’. EurekAlert! Science Newshttps://www.eurekalert.org/pub_releases/2008-05/uov-at051208.php (2008).
Knowles OA, Robinson BH, Contangelo A, Clucas L. Biochar for the mitigation of nitrate leaching from soil amended with biosolids. Sci. Total Environ. 2011;409:3206–3210. doi: 10.1016/j.scitotenv.2011.05.011. PubMed DOI
Younis U, et al. Role of cotton sticks biochar in immobilization of nickel under induced toxicity condition and growth indices of Trigonella corniculata L. Environ. Sci. Pollut. Res. 2020;27:1752–1761. doi: 10.1007/s11356-019-06466-3. PubMed DOI
Danish S, Zafar-Ul-Hye M, Hussain S, Riaz M, Qayyum MF. Mitigation of drought stress in maize through inoculation with drought tolerant ACC deaminase containing PGPR under axenic conditions. Pakistan J. Bot. 2020;52:49–60.
Danish S, Zafar-ul-Hye M. Combined role of ACC deaminase producing bacteria and biochar on cereals productivity under drought. Phyton. 2020;89:217–227. doi: 10.32604/phyton.2020.08523. DOI
Danish S, et al. Phosphorus solubilizing bacteria and rice straw biochar consequence on maize pigments synthesis. Int. J. Biosci. 2015;5:31–39.
Qayyum MF, Abid M, Danish S, Saeed MK, Ali MA. Effects of various biochars on seed germination and carbon mineralization in an alkaline soil. Pakistan J. Agric. Sci. 2014;51:977–982.
Esfandbod M, et al. Aged acidic biochar increases nitrogen retention and decreases ammonia volatilization in alkaline bauxite residue sand. Ecol. Eng. 2017;98:157–165. doi: 10.1016/j.ecoleng.2016.10.077. DOI
Huang M, Yang L, Qin H, Jiang L, Zou Y. Quantifying the effect of biochar amendment on soil quality and crop productivity in Chinese rice paddies. F. Crop. Res. 2013;154:172–177. doi: 10.1016/j.fcr.2013.08.010. DOI
Younis U, Danish S, Shah MHR, Malik SA. Nutrient shifts modeling in Spinacea oleracea L. and Trigonella corniculata L. in contaminated soil amended with biochar. Int. J. Biosci. 2014;5:89–98.
Danish S, Younis U, Nasreen S, Akhtar N, Iqbal MT. Biochar consequences on cations and anions of sandy soil. J. Biodivers. Environ. Sci. 2015;6:121–131.
Zafar-ul-Hye M, et al. Author Correction: Potential role of compost mixed biochar with rhizobacteria in mitigating lead toxicity in spinach. Sci. Rep. 2020;10:12159. doi: 10.1038/s41598-020-69183-9. PubMed DOI PMC
Cayuela ML, et al. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosyst. Environ. 2014;191:5–16. doi: 10.1016/j.agee.2013.10.009. DOI
Belay-Tedla A, Zhou X, Su B, Wan S, Luo Y. Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping. Soil Biol. Biochem. 2009;41:110–116. doi: 10.1016/j.soilbio.2008.10.003. DOI
Harter J, et al. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. ISME J. 2014;8:660–674. doi: 10.1038/ismej.2013.160. PubMed DOI PMC
Van Zwieten L, et al. Influence of biochars on flux of N2O and CO2 from Ferrosol. Aust. J. Soil Res. 2010;48:555–568. doi: 10.1071/SR10004. DOI
Kammann C, Ratering S, Eckhard C, Müller C. Biochar and hydrochar eff ects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils. J. Environ. Qual. 2012;41:1052–1066. doi: 10.2134/jeq2011.0132. PubMed DOI
Liu X, Shi Y, Zhang Q, Li G. Effects of biochar on nitrification and denitrification-mediated N 2 O emissions and the associated microbial community in an agricultural soil. Environ. Sci. Pollut. Res. 2021;28:6649–6663. doi: 10.1007/s11356-020-10928-4. PubMed DOI
Ding Y, et al. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water, Air, Soil Pollut. 2010;213:47–55. doi: 10.1007/s11270-010-0366-4. DOI
Agegnehu G, Ademe T. Integrated soil fertility and plant nutrient management in tropical agro-ecosystems: A review. Pedosphere. 2017;2:2.
Haefele SM, et al. Effects and fate of biochar from rice residues in rice-based systems. F. Crop. Res. 2011;121:430–440. doi: 10.1016/j.fcr.2011.01.014. DOI
Aulakh MS, Singh K, Doran J. Effects of 4-amino 1,2,4-triazole, dicyandiamide and encapsulated calcium carbide on nitrification inhibition in a subtropical soil under upland and flooded conditions. Biol. Fertil. Soils. 2001;33:258–263. doi: 10.1007/s003740000317. DOI
Dawar K, et al. The effect of biochar and nitrogen inhibitor on ammonia and nitrous oxide emissions and wheat productivity. J. Plant Growth Regul. 2021 doi: 10.1007/s00344-020-10283-1. DOI
Puga AP, et al. Nitrogen availability and ammonia volatilization in biochar-based fertilizers. Arch. Agron. Soil Sci. 2020;66:992–1004. doi: 10.1080/03650340.2019.1650916. DOI
Dawar K, et al. Effects of the nitrification inhibitor nitrapyrin and the plant growth regulator gibberellic acid on yield-scale nitrous oxide emission in maize fields under hot climatic conditions. Pedosphere. 2021;31:323–331. doi: 10.1016/S1002-0160(20)60076-5. DOI
Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems—a review. Mitig. Adapt. Strateg. Glob. Chang. 2006;11:395–419. doi: 10.1007/s11027-005-9006-5. DOI
Zhang A, et al. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. F. Crop. Res. 2012;127:153–160. doi: 10.1016/j.fcr.2011.11.020. DOI
Wang S, et al. Different effects of biochar and a nitrification inhibitor application on paddy soil denitrification: A field experiment over two consecutive rice-growing seasons. Sci. Total Environ. 2017;593–594:347–356. PubMed
Dawar K, et al. Nitrification inhibitor and plant growth regulators improve wheat yield and nitrogen use efficiency. J. Plant Growth Regul. 2021 doi: 10.1007/s00344-020-10295-x. DOI
Borzouei A, et al. Effects of the nitrification inhibitor nitrapyrin and tillage practices on yield-scaled nitrous oxide emission from a maize field in Iran. Pedosphere. 2021;31:314–322. doi: 10.1016/S1002-0160(20)60067-4. DOI
Dawar K, et al. Effects of the nitrification inhibitor nitrapyrin and mulch on N2O emission and fertilizer use efficiency using 15N tracing techniques. Sci. Total Environ. 2020;2:143739. PubMed
Li B, Fan CH, Xiong ZQ, Li QL, Zhang M. The combined effects of nitrification inhibitor and biochar incorporation on yield-scaled N2O emissions from an intensively managed vegetable field in southeastern China. Biogeosciences. 2015;12:2003–2017. doi: 10.5194/bg-12-2003-2015. DOI
Grace, P. & Barton, L. Meet N2O, the greenhouse gas 300 times worse than CO2. The Conversationhttps://theconversation.com/meet–n2o–the–greenhous (2014).
Qin S, et al. Yield-scaled N 2O emissions in a winter wheat-summer corn double-cropping system. Atmos. Environ. 2012;55:240–244. doi: 10.1016/j.atmosenv.2012.02.077. DOI
Saggar S, Hedley CB, Giltrap DL, Lambie SM. Measured and modelled estimates of nitrous oxide emission and methane consumption from a sheep-grazed pasture. Agric. Ecosyst. Environ. 2007;122:357–365. doi: 10.1016/j.agee.2007.02.006. DOI
van Groenigen JW, Velthof GL, Oenema O, Van Groenigen KJ, Van Kessel C. Towards an agronomic assessment of N2O emissions: A case study for arable crops. Eur. J. Soil Sci. 2010;61:903–913. doi: 10.1111/j.1365-2389.2009.01217.x. DOI
Page, A. L., Miller, R. H. & Keeny, D. R. Soil pH and lime requirement. in Methods of Soil Analysis 199–208 (American Society of Agronomy, 1982).
Rhoades, J. D. Salinity: Electrical Conductivity and Total Dissolved Solids. in Methods of Soil Analysis, Part 3, Chemical Methods (eds. D.L. Sparks et al.) vol. 5 417–435 (Soil Science Society of America, 1996).
Nelson, D. W. & Sommers, L. E. Total Carbon, Organic Carbon, and Organic Matter. in Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties (ed. Page, A. L.) 539–579 (American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 1982).
Bouyouces GJ. Hydrometer method improved for making particle size analysis of soil. Agron. J. 1962;53:464–465. doi: 10.2134/agronj1962.00021962005400050028x. DOI
Bremner, J. M. & Mulvaney, C. S. Nitrogen–total. In ‘Methods of soil analysis, Part 2. Chemical and microbiological properties’, 2nd edn.(Eds AL Page, RH Miller, DR Keeney) pp. 595–624. Soil Sci. Soc. Am. Inc. Am. Soc. Agron. Inc. Madison, WI (1982).
Steel, R. G., Torrie, J. H. & Dickey, D. A. Principles and Procedures of Statistics: A Biometrical Approach. (McGraw Hill Book International Co., 1997).