Does the in vitro egg hatch test predict the failure of benzimidazole treatment in Haemonchus contortus?
Jazyk angličtina Země Francie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-18-0131
agentúra na podporu výskumu a vývoja
VEGA 2/0099/19
agentúra ministerstva školstva, vedy, výskumu a športu sr
COMBAR CA16230
european cooperation in science and technology
PubMed
34410223
PubMed Central
PMC8375488
DOI
10.1051/parasite/2021059
PII: parasite210009
Knihovny.cz E-zdroje
- Klíčová slova
- Anthelmintic resistance, Detection methods, Egg hatch test, Goats, Haemonchus contortus,
- MeSH
- anthelmintika * farmakologie terapeutické užití MeSH
- benzimidazoly farmakologie terapeutické užití MeSH
- feces MeSH
- Haemonchus * genetika MeSH
- léková rezistence MeSH
- nemoci ovcí * MeSH
- ovce MeSH
- počet parazitárních vajíček veterinární MeSH
- techniky in vitro MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anthelmintika * MeSH
- benzimidazoly MeSH
Considerable research has been directed towards optimising in vitro tests that can diagnose resistance in pre-parasitic stages of parasites. The objective of this study was to compare the in vivo faecal egg count reduction test (FECRT), the in vitro egg hatch test (EHT), and the molecular determination of the frequency of a codon 200 allele of β-tubulin isotype 1 associated with benzimidazole resistance in larval stages of Haemonchus contortus obtained from infected goats. Animals were infected with composite infective doses representing 10, 20, 30, 40, 60, and 80% resistant alleles. Faecal samples for the EHT were collected on 28, 33, and 35 days post-infection. The results of the in vivo FECRT indicated that albendazole treatment reduced infections consisting of composite doses of 10, 20, 30, 40, 60, and 80% larvae of the resistant isolate by 91.3, 78.0, 63.3, 48.4, 36.5, and 41.4%, respectively. The drug concentration at which 50% of the eggs were prevented from developing hatching larvae (ED50) in the in vitro EHT varied from 0.09 ± 0.01 to 15.63 ± 12.10 μg/mL thiabendazole. The results of the in vitro EHT indicated that the test could estimate in vivo resistance well. The EHT could thus accurately estimate the in vivo efficacy of the drug and percentage of the resistance allele in the population using hatching parameters in delineation doses. This finding was also supported by comparing the FECRT data to the hatching percentages in the EHT on 30 goat farms in Slovakia with natural mixed infections of gastrointestinal parasites.
TITLE: Le test d’éclosion des œufs in vitro prédit-il l’échec du traitement au benzimidazole pour Haemonchus contortus ? ABSTRACT: Des efforts de recherche considérables ont été consacrés à l’optimisation des tests in vitro permettant de diagnostiquer la résistance des parasites aux stades préparasitaires. L’objectif de cette étude était de comparer le test de réduction du nombre d’œufs fécaux in vivo (TRNOF), le test d’éclosion des œufs in vitro (TEO) et la détermination moléculaire de la fréquence d’un allèle du codon 200 de l’isotype 1 de la β-tubuline associé à résistance au benzimidazole au stade larvaire d’Haemonchus contortus, obtenus à partir de chèvres infectées. Les animaux ont été infectés avec des doses infectieuses composites représentant 10, 20, 30, 40, 60 et 80 % d’allèles résistants. Des échantillons de matières fécales ont été prélevés pour le TEO aux jours 28, 33 et 35 après l’infection. Les résultats de la TRNOF in vivo ont indiqué que le traitement à l’albendazole réduisait respectivement de 91,3, 78,0, 63,3, 48,4, 36,5 et 41,4 % les infections composées de doses composites de 10, 20, 30, 40, 60 et 80 % de larves de l’isolat résistant. La concentration de médicament à laquelle 50 % des œufs ont été empêchés de développer des larves qui éclosent (DE50) dans le TEO in vitro variait de 0,09 ± 0,01 à 15,63 ± 12,10 μg/mL de thiabendazole. Les résultats du TEO in vitro ont indiqué que le test pouvait correctement estimer la résistance in vivo. Le TEO a ainsi pu estimer avec précision l’efficacité in vivo du médicament et le pourcentage de l’allèle de résistance dans la population en utilisant des paramètres d’éclosion dans les doses de délimitation. Cette constatation a également été étayée par la comparaison des données du TRNOF aux pourcentages d’éclosion dans le TEO sur 30 élevages de chèvres en Slovaquie, avec des infections mixtes naturelles de parasites gastro-intestinaux.
Institute of Parasitology Slovak Academy of Sciences Hlinkova 3 040 01 Košice Slovakia
Lithuanian University of Health Sciences Tilzes 18 47181 Kaunas Lithuania
Zobrazit více v PubMed
Álvarez-Sánchez MA, Pérez-García J, Cruz-Rojo MA, Rojo Vázquez FA. 2006. Anthelmintic resistance in trichostrongylid nematodes of sheep farms in Northwest Spain. Parasitology Research, 99, 78–83. PubMed
Babják M, Königová A, Urda Dolinská M, Vadlejch J, Várady M. 2018. Anthelmintic resistance in goat herds – in vivo versus in vitro detection. Veterinary Parasitology, 254, 10–14. PubMed
Baltrušis P, Komáromyová M, Várady M, von Samson-Himmelstjerna G, Höglund J. 2020. Assessment of the F200Y mutation frequency in the β tubulin gene of Haemonchus contortus following the exposure to a discriminating concentration of thiabendazole in the egg hatch test. Experimental Parasitology, 217, 107957. PubMed
Cabaret J, Berrag B. 2004. Faecal egg count reduction test for assessing anthelmintic efficacy: average versus individually based estimations. Veterinary Parasitology, 121, 105–113. PubMed
Coles GC, Simpkin KG. 1977. Resistance of nematode eggs to the ovicidal activity of benzimidazoles Research in Vetertinary. Science, 22, 386–387. PubMed
Coles GC, Bauer C, Borgsteede FHM, Geerts S, Klei TR, Taylor MA, Waller PJ. 1992. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Veterinary Parasitology, 44, 35–44. PubMed
Coles GC, Jackson F, Pomroy WE, Prichard RK, von Samson-Himmelstjerna G, Silvestre A, Taylor MA, Vercruysse J. 2006. The detection of anthelmintic resistance in nematodes of veterinary importance. Veterinary Parasitology, 136, 167–185. PubMed
Čerňanská D, Várady M, Čorba J. 2006. A survey on anthelmintic resistance in nematodeparasites of sheep in the Slovak Republic. Veterinary Parasitology, 135, 39–45. PubMed
Čudeková P, Várady M, Dolinská M, Königová A. 2010. Phenotypic and genotypic characterisation of benzimidazole susceptible and resistant isolates of Haemonchus contortus. Veterinary Parasitology, 172, 155–190. PubMed
Díez-Baños P, Pedreira J, Sánchez-Andrade R, Francisco I, Suárez JL, Díaz P, Panadero R, Arias M, Painceira A, Paz-Silva A, Morrondo P. 2008. Field evaluation for anthelmintic-resistant ovine gastrointestinal nematodes by in vitro and in vivo assays. Journal of Parasitology, 94, 925–928. PubMed
Dobson RJ, Griffiths DA, Donald AD, Waller PJ. 1987. A genetic model describing the evolution of levamisole resistance in Trichostrongyluscolubriformis, a nematode parasite of sheep. IMA Journal of Mathematics Applied in Medicine and Biology, 4, 279–293. PubMed
Dolinská M, Ivanišinová O, Königová A, Várady M. 2014. Anthelmintic resistance in sheep gastrointestinal nematodes in Slovakia detected by in vitro methods. BMC Veterinary Research, 10, 233. PubMed PMC
Domke AVM, Chartier C, Gjerde B, Höglund J, Leine N, Vatn S, Stuen S. 2012. Prevalence of anthelmintic resistance in gastrointestinal nematodes of sheep and goats in Norway. Parasitology Research, 111, 185–193. PubMed PMC
Höglund J, Gustafsson K, Ljungström BL, Engström A, Donnan A, Skuce P. 2009. Anthelmintic resistance in Swedish sheep flocks based on a comparison of the results from the faecal egg count reduction test and resistant allele frequencies of the beta-tubulin gene. Veterinary Parasitology, 161, 60–68. PubMed
Holm SA, Sörensen CRL, Thamsborg SM, Enemark HL. 2014. Gastrointestinal nematodes and anthelmintic resistance in Danish goat herds. Parasite, 21, 1–10. PubMed PMC
Königová A, Várady M, Čorba J. 2003. Comparison of in vitro methods and faecal egg count reduction test for the detection of benzimidazole resistance in small strongyles of horses. Veterinary Research Communications, 27, 281–288. PubMed
Kupčinskas T, Stadalienė I, Šarkūnas M, Riškevičienė V, Várady M, Höglund J, Petkevičius S. 2015. Prevalence of anthelmintic resistance on Lithuanian sheep farms assessed by in vitro methods. Acta Veterinaria Scandinavica, 57, 88. PubMed PMC
Le Jambre LF. 1976. Egg hatch as an in vitro assay of thiabendazole resistance in nematodes. Veterinary Parasitology, 2, 385–391.
Maharshi AK, Swarnkar CP, Singh D, Manohar GS, Ayub M. 2011. Status of anthelmintic resistance in gastrointestinal nematodes of sheep in Rajasthan. Indian Journal of Animal Sciences, 81, 105–109.
Martin PJ, Anderson N, Jarrett RG. 1989. Detecting benzimidazole resistance with faecal egg count reduction tests and in vitro assays. Australian Veterinary Journal, 66, 236–240. PubMed
Martínez-Valladares M, Martínez-Perez JM, Robles-Perez D, Cordero-Perez C, Famularo MR, Fernandez-Pato N, Castanon-Ordonez L, Rojo-Vazquez FA. 2013. The present status of anthelmintic resistance in gastrointestinal nematode infections of sheep in the northwest of Spain by in vivo and in vitro techniques. Veterinary Parasitology, 191, 177–181. PubMed
Mickiewicz M, Czopowicz M, Kawecka-Grochocka E, Moroz A, Szaluś-Jordanow O, Várady M, Königová A, Spinu M, Górski P, Bagnicka E, Kaba J. 2020. The first report of multidrug resistance in gastrointestinal nematodes in goat population in Poland. BMC Veterinary Research, 16, 270. PubMed PMC
Papadopoulos E, Himonas C, Coles GC. 2001. Drought and flock isolation may enhance the development of anthelmintic resistance in nematodes. Veterinary Parasitology, 97, 253–259. PubMed
Rialch A, Vatsya S, Kumar RR. 2013. Detection of benzimidazole resistance in gastrointestinal nematodes of sheep and goats of sub-Himalyan region of northern India using different tests. Veterinary Parasitology, 198, 312–318. PubMed
Rinaldi L, Morgan ER, Bosco A, Coles GC, Cringoli G. 2014. The maintenance of anthelmintic efficacy in sheep in a mediterranean climate. Veterinary Parasitology, 203, 139–143. PubMed
Roos MH, Otsen M, Hoekstra R, Veenstra JG, Lenstra JA. 2004. Genetic analysis of inbreeding of two strains of the parasitic nematode Haemonchus contortus. International Journal for Parasitology, 34, 109–115. PubMed
Várady M, Königová A, Čorba J. 2000. Benzimidazole resistance in equine cyathostomes in Slovakia. Veterinary Parasitology, 94, 67–74. PubMed
Várady M, Čudeková P, Čorba J. 2007. In vitro detection of benzimidazole resistance in Haemonchus contortus: egg hatch test versus larval development test. Veterinary Parasitology, 149, 104–110. PubMed
von Samson-Himmelstjerna G, Walsh TK, Donnan AA, Carrière S, Jackson F, Skuce PJ, Rohn K, Wolstenholme AJ. 2009. Molecular detection of benzimidazole resistance in Haemonchus contortus using real-time PCR and pyrosequencing. Parasitology, 136, 349–358. PubMed
von Samson-Himmelstjerna G, Coles G, Jackson F, Bauer C, Borgsteede F, Cirak V, Demeler J, Donnan A, Dorny P, Epe C, Harder A, Hoglund J, Kaminsky R, Kerboeuf D, Kuetler U, Papadopoulos E, Posedi J, Small J, Várady M, Vercruysse J, Wirtherle N. 2009. Standardization of the egg hatch test for the detection of benzimidazole resistance in parasitic nematodes. Parasitology Research, 105, 825–834. PubMed
Whitlock HV, Sangster NC, Gunawan M, Porter CJ, Kelly JD. 1980. Trichostrongylus colubriformis and Ostertagia species resistant to levamisole, morantel tartrate and thiabendazole: isolation into pure strain and anthelmintic titration. Research in Veterinary Science, 29, 31–35. PubMed
Wirtherle N, Schinieder T, von Samson-Himmelstjerna G. 2004. Prevalence of benzimidazole resistance on horse farms in Germany. Veterinary Record, 154, 39–41. PubMed
Wolstenholme AJ, Fairwether I, Prichard R, von Samson-Himmelstjerna G, Sangster NC. 2004. Drug resistance in veterinary helminths. Trends in Parasitology, 20, 469–476. PubMed