Editorial: Employing Experimental Gnotobiotic Models to Decipher the Host-Microbiota Cross-Talk in Health and Disease
Language English Country Switzerland Media electronic-ecollection
Document type Editorial, Introductory Journal Article, Research Support, Non-U.S. Gov't
PubMed
34413863
PubMed Central
PMC8369756
DOI
10.3389/fimmu.2021.729052
Knihovny.cz E-resources
- Keywords
- germ-free, gnotobiology, host-bacteria interactions, immune system, microbiota,
- MeSH
- Bacteria growth & development immunology metabolism MeSH
- Bacterial Load MeSH
- Housing, Animal MeSH
- Animal Husbandry MeSH
- Species Specificity MeSH
- Germ-Free Life * MeSH
- Host-Pathogen Interactions MeSH
- Humans MeSH
- Microbiota * MeSH
- Disease Models, Animal MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
- Introductory Journal Article MeSH
- Editorial MeSH
Institute of Specific Prophylaxis and Tropical Medicine Medical University of Vienna Vienna Austria
Laboratory of Cellular and Molecular Immunology Czech Academy of Sciences Prague Czechia
Laboratory of Gnotobiology Institute of Microbiology Czech Academy of Sciences Novy Hradek Czechia
Editorial on the Research Topic Employing Experimental Gnotobiotic Models to Decipher the Host-Microbiota Cross-Talk in Health and Disease PubMed
See more in PubMed
Heintz-Buschart A, Wilmes P. Human Gut Microbiome: Function Matters. Trends Microbiol (2018) 26:563–74. 10.1016/j.tim.2017.11.002 PubMed DOI
Tlaskalova-Hogenova H, Stepankova R, Kozakova H, Hudcovic T, Vannucci L, Tuckova L, et al. . The Role of Gut Microbiota (Commensal Bacteria) and the Mucosal Barrier in the Pathogenesis of Inflammatory and Autoimmune Diseases and Cancer: Contribution of Germ-Free and Gnotobiotic Animal Models of Human Diseases. Cell Mol Immunol (2011) 8:110–20. 10.1038/cmi.2010.67 PubMed DOI PMC
Tlaskalova-Hogenova H, Sterzl J, Stepankova R, Dlabac V, Veticka V, Rossmann P, et al. . Development of Immunological Capacity Under Germfree and Conventional Conditions. Ann N Y Acad Sci (1983) 409:96–113. 10.1111/j.1749-6632.1983.tb26862.x PubMed DOI
Leulier F, MacNeil LT, Lee WJ, Rawls JF, Cani PD, Schwarzer M, et al. . Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health. Cell Metab (2017) 25:522–34. 10.1016/j.cmet.2017.02.001 PubMed DOI PMC
Macpherson AJ, McCoy KD. Independence Day for IgA. Immunity (2015) 43:416–8. 10.1016/j.immuni.2015.08.024 PubMed DOI
Darnaud M, Vadder FD, Bogeat P, Boucinha L, Bulteau A-L, Bunescu A, et al. . A Standardized Gnotobiotic Mouse Model Harboring a Minimal 15-Member Mouse Gut Microbiota Recapitulates SOPF/SPF Phenotypes. bioRxiv (2021). 10.1101/2019.12.30.890954 PubMed DOI PMC
Cahenzli J, Köller Y, Wyss M, Geuking MB, McCoy KD. Intestinal Microbial Diversity During Early-Life Colonization Shapes Long-Term IgE Levels. Cell Host Microbe (2013) 14:559–70. 10.1016/j.chom.2013.10.004 PubMed DOI PMC
Hong SW, O E, Lee JY, Lee M, Han D, Ko HJ, et al. . Food Antigens Drive Spontaneous IgE Elevation in the Absence of Commensal Microbiota. Sci Adv (2019) 5:eaaw1507. 10.1126/sciadv.aaw1507 PubMed DOI PMC
Rodriguez B, Prioult G, Bibiloni R, Nicolis I, Mercenier A, Butel M-J, et al. . Germ-Free Status and Altered Caecal Subdominant Microbiota Are Associated With a High Susceptibility to Cow’s Milk Allergy in Mice. FEMS Microbiol Ecol (2011) 76:133–44. 10.1111/j.1574-6941.2010.01035.x PubMed DOI
Oka A, Sartor RB. Microbial-Based and Microbial-Targeted Therapies for Inflammatory Bowel Diseases. Dig Dis Sci (2020) 65:757–88. 10.1007/s10620-020-06090-z PubMed DOI PMC