• This record comes from PubMed

Streptomyces tardus sp. nov.: A Slow-Growing Actinobacterium Producing Candicidin, Isolated From Sediments of the Trondheim Fjord

. 2021 ; 12 () : 714233. [epub] 20210804

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Marine environments are home to an extensive number of microorganisms, many of which remain unexplored for taxonomic novelty and functional capabilities. In this study, a slow-growing Streptomyces strain expressing unique genomic and phenotypic characteristics, P38-E01 T , was described using a polyphasic taxonomic approach. This strain is part of a collection of over 8,000 marine Actinobacteria isolates collected in the Trondheim fjord of Norway by SINTEF Industry (Trondheim, Norway) and the Norwegian University of Science and Technology (NTNU, Trondheim, Norway). Strain P38-E01 T was isolated from the sediments of the Trondheim fjord, and phylogenetic analyses affiliated this strain with the genus Streptomyces, but it was not closely affiliated with other described species. The closest related type strains were Streptomyces daliensis YIM 31724 T (98.6%), Streptomyces rimosus subsp. rimosus ATCC 10970 T (98.4%), and Streptomyces sclerotialus NRRL ISP-5269 T (98.3%). Predominant fatty acids were C16:0 iso, C16:0, and Summed Feature 3, and the predominant respiratory quinones were MK-10(H6), MK-10(H4), and MK9(H4). The main polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, and phosphoglycolipid. The whole-cell sugars were glucose, ribose, and in minor amounts, mannose. The cell wall peptidoglycan contained LL-diaminopimelic acid. The draft genome has a size of 6.16 Mb, with a %G + C content of 71.4% and is predicted to contain at least 19 biosynthetic gene clusters encoding diverse secondary metabolites. Strain P38-E01 T was found to inhibit the growth of the pathogenic yeast Candida albicans ATCC 90028 and a number of Gram-positive bacterial human and plant pathogens. Metabolites extracted from cultures of P38-E01 T were analyzed by mass spectrometry, and it was found that the isolate produced the antifungal compound candicidin. Phenotypic and chemotaxonomic signatures, along with phylogenetic analyses, distinguished isolate P38-E01 T from its closest neighbors; thus, this isolate represents a novel species of the genus Streptomyces for which the name Streptomyces tardus sp. nov. (P38-E01 T = CCM 9049 T = DSM 111582 T ) is proposed.

See more in PubMed

Alanjary M., Steinke K., Ziemert N. (2019). AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res. 47 W276–W282. 10.1093/nar/gkz282 PubMed DOI PMC

Alcock B. P., Raphenya A. R., Lau T. T. Y., Tsang K. K., Bouchard M., Edalatmand A., et al. (2020). CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48 D517–D525. 10.1093/nar/gkz935 PubMed DOI PMC

Arndt D., Grant J. R., Marcu A., Sajed T., Pon A., Liang Y., et al. (2016). PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44 W16–W21. 10.1093/nar/gkw387 PubMed DOI PMC

Atlas R. M. (2004). Handbook of Microbiological Media. Boca Raton, FL: CRC Press.

Ayed A., Slama N., Mankai H., Bachkouel S., ElKahoui S., Tabbene O., et al. (2018). Streptomyces tunisialbus sp. nov., a novel Streptomyces species with antimicrobial activity. Antonie van Leeuwenhoek 111 1571–1581. 10.1007/s10482-018-1046-4 PubMed DOI

Barbour A. G., Adeolu M., Gupta R. S. (2017). Division of the genus Borrelia into two genera (corresponding to Lyme disease and relapsing fever groups) reflects their genetic and phenotypic distinctiveness and will lead to a better understanding of these two groups of microbes (Margos et al. (2016) There is inadequate evidence to support the division of the genus Borrelia. Int. J. Syst. Evol. Microbiol. 10.1099/ijsem.0.001717) Int. J. Syst. Evol. Microbiol. 67 2058–2067. 10.1099/ijsem.0.001815 PubMed DOI

Barrow G. I., Feltham R. K. A. (1993). Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd Edn. Cambridge: Cambridge University Press.

Bauer A. W., Kirby W. M., Sherris J. C., Turck M. (1966). Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45 493–496. PubMed

Biswas A., Staals R. H. J., Morales S. E., Fineran P. C., Brown C. M. (2016). CRISPRDetect: A flexible algorithm to define CRISPR arrays. BMC Genom. 17:356. 10.1186/s12864-016-2627-0 PubMed DOI PMC

Bligh E. G., Dyer W. J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37 911–917. 10.1139/o59-099 PubMed DOI

Blin K., Shaw S., Kloosterman A. M., Charlop-Powers Z., van Wezel G. P., Medema M. H., et al. (2021). antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49 W29–W35. 10.1093/nar/gkab335 PubMed DOI PMC

Blin K., Wolf T., Chevrette M. G., Lu X., Schwalen C. J., Kautsar S. A., et al. (2017). antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 45 W36–W41. 10.1093/nar/gkx319 PubMed DOI PMC

Boetzer M., Pirovano W. (2012). Toward almost closed genomes with GapFiller. Genome Biol. 13:R56. 10.1186/gb-2012-13-6-r56 PubMed DOI PMC

Boetzer M., Pirovano W. (2014). SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information. BMC Bioinform. 15:211. 10.1186/1471-2105-15-211 PubMed DOI PMC

Bredholdt H., Galatenko O. A., Engelhardt K., Fjærvik E., Terekhova L. P., Zotchev S. B. (2007). Rare actinomycete bacteria from the shallow water sediments of the Trondheim fjord, Norway: isolation, diversity and biological activity. Environ. Microbiol. 9 2756–2764. 10.1111/j.1462-2920.2007.01387.x PubMed DOI

Brouns S. J. J., Jore M. M., Lundgren M., Westra E. R., Slijkhuis R. J. H., Snijders A. P. L., et al. (2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321 960–964. 10.1126/science.1159689 PubMed DOI PMC

Brown A. G., Butterworth D., Cole M., Hanscomb G., Hood J. D., Reading C., et al. (1976). Naturally-occurring β-lactamase inhibitors with antibacterial activity. J. Antibiot. 29 668–669. 10.7164/antibiotics.29.668 PubMed DOI

Brown N. L., Stoyanov J. V., Kidd S. P., Hobman J. L. (2003). The MerR family of transcriptional regulators. FEMS Microbiol. Rev. 27 145–163. 10.1016/S0168-6445(03)00051-2 PubMed DOI

Carattoli A., Zankari E., García-Fernández A., Voldby Larsen M., Lund O., Villa L., et al. (2014). In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58 3895–3903. 10.1128/AAC.02412-14 PubMed DOI PMC

Chaisson M. J., Tesler G. (2012). Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinform. 13:238. 10.1186/1471-2105-13-238 PubMed DOI PMC

Chen S., Huang X., Zhou X., Bai L., He J., Jeong K. J., et al. (2003). Organizational and mutational analysis of a complete FR-008/candicidin gene cluster encoding a structurally related polyene complex. Chem. Biol. 10 1065–1076. 10.1016/j.chembiol.2003.10.007 PubMed DOI

Christensen W. B. (1946). Urea decomposition as a means of differentiating proteus and paracolon cultures from each other and from Salmonella and Shigella Types 1. J. Bacteriol. 52 461–466. PubMed PMC

Clsi. (2015). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement (M100-S25). Wayne, PA: Clinical and Laboratory Standards Institute.

Costa M., Zúñiga P., Peñalver A. M., Thorsteinsdottir M., Pérez M., Cañedo L. M., et al. (2017). New fluvirucinins C1 and C2 produced by a marine derived actinomycete. Nat. Product Commun. 12:1934578X1701200509. 10.1177/1934578X1701200509 PubMed DOI

Dharmaraj S. (2010). Marine Streptomyces as a novel source of bioactive substances. World J. Microbiol. Biotechnol. 26 2123–2139. 10.1007/s11274-010-0415-6 DOI

Felsenstein J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17 368–376. 10.1007/bf01734359 PubMed DOI

Felsenstein J. (1985). Confidence limits on phylogenies: an approach using bootstrap. Evolution 39 783–791. 10.1111/j.1558-5646.1985.tb00420.x PubMed DOI

Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H.-N. (1974). Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int. J. Syst. Evol. Microbiol. 24 54–63. 10.1099/00207713-24-1-54 DOI

Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M. (2007). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57 81–91. 10.1099/ijs.0.64483-0 PubMed DOI

Gurevich A., Saveliev V., Vyahhi N., Tesler G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics 29 1072–1075. 10.1093/bioinformatics/btt086 PubMed DOI PMC

Haft D. H., DiCuccio M., Badretdin A., Brover V., Chetvernin V., O’Neill K., et al. (2018). RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res. 46 D851–D860. 10.1093/nar/gkx1068 PubMed DOI PMC

Helbert W., Poulet L., Drouillard S., Mathieu S., Loiodice M., Couturier M., et al. (2019). Discovery of novel carbohydrate-active enzymes through the rational exploration of the protein sequences space. Proc. Natl. Acad. Sci. U S A. 116 10184–10185. 10.1073/pnas.1906635116 PubMed DOI PMC

Huerta-Cepas J., Szklarczyk D., Heller D., Hernández-Plaza A., Forslund S. K., Cook H., et al. (2019). eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47 D309–D314. 10.1093/nar/gky1085 PubMed DOI PMC

Jackman S. D., Vandervalk B. P., Mohamadi H., Chu J., Yeo S., Hammond S. A., et al. (2017). ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res. 27 768–777. 10.1101/gr.214346.116 PubMed DOI PMC

Jones K. L. (1949). Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia us a fluctuating characteristic. J. Bacteriol. 57 141–145. PubMed PMC

Jørgensen H., Fjærvik E., Hakvåg S., Bruheim P., Bredholt H., Klinkenberg G., et al. (2009). Candicidin biosynthesis gene cluster is widely distributed among Streptomyces spp. isolated from the sediments and the neuston layer of the trondheim Fjord, Norway. Appl. Environ. Microbiol. 75 3296–3303. 10.1128/AEM.02730-08 PubMed DOI PMC

Kamlage B. (1996). Methods for general and molecular bacteriology. Eds P. Gerhardt, R. G. E. Murray, W. A. Wood and N. R. Krieg. 791, Numerous figures and tables. American society for microbiology, Washington, D.C., 1994. Price: 55.00 €. Food Nahrung 40:103. 10.1002/food.19960400226 DOI

Kämpfer P. (2015). “Streptomyces,” in Bergey’s Manual of Systematics of Archaea and Bacteria. Atlanta: American Cancer Society.

Kelly K. L., Judd D. B.Inter-Society Color Council, United States, and National Bureau of Standards. (1965). ISCC-NBS color-name charts illustrated with centroid colors. Washington, DC: U.S. National Bureau of Standards.

Kluge A. G., Farris J. S. (1969). Quantitative phyletics and the evolution of anurans. Syst. Biol. 18 1–32. 10.2307/2412407 DOI

Koo B.-J., Kim J. M., Byun S.-M., Hong S.-K. (1991). Optimal production conditions of Streptomyces griseus trypsin (SGT) in Streptomyces lividans. BMB Rep. 32 86–91.

Koutsolioutsou A., Peña-Llopis S., Demple B. (2005). Constitutive soxR mutations contribute to multiple-antibiotic resistance in clinical Escherichia coli isolates. Antimicrob. Agents Chemother. 49 2746–2752. 10.1128/AAC.49.7.2746-2752.2005 PubMed DOI PMC

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35 1547–1549. 10.1093/molbev/msy096 PubMed DOI PMC

Kurup V. P., Babcock J. B. (1979). Use of casein, tyrosine, and hypoxanthine in the identification of nonfermentative gram-negative bacilli. Med. Microbiol. Immunol. 167 71–75. 10.1007/BF02123556 PubMed DOI

Law J. W.-F., Ser H.-L., Ab Mutalib N.-S., Saokaew S., Duangjai A., Khan T. M., et al. (2019). Streptomyces monashensis sp. nov., a novel mangrove soil actinobacterium from East Malaysia with antioxidative potential. Sci. Rep. 9 1–18. 10.1038/s41598-019-39592-6 PubMed DOI PMC

Law J. W.-F., Ser H.-L., Duangjai A., Saokaew S., Bukhari S. I., Khan T. M., et al. (2017a). Streptomyces colonosanans sp. nov., A novel actinobacterium isolated from Malaysia mangrove soil exhibiting antioxidative activity and cytotoxic potential against human colon cancer cell lines. Front. Microbiol. 8:877. 10.3389/fmicb.2017.00877 PubMed DOI PMC

Law J. W.-F., Ser H.-L., Khan T. M., Chuah L.-H., Pusparajah P., Chan K.-G., et al. (2017b). The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Front. Microbiol. 8:3. 10.3389/fmicb.2017.00003 PubMed DOI PMC

Lechevalier H., Acker R. F., Corke C. T., Haenseler C. M., Waksman S. A. (1953). Candicidin, a new antifungal antibiotic. Mycologia 45 155–171. 10.1080/00275514.1953.12024259 DOI

Lee I., Ouk Kim Y., Park S.-C., Chun J. (2016). OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66 1100–1103. 10.1099/ijsem.0.000760 PubMed DOI

Matsumoto A., Takahashi Y. (2017). Endophytic actinomycetes: promising source of novel bioactive compounds. J. Antibiot. 70 514–519. 10.1038/ja.2017.20 PubMed DOI

Meier-Kolthoff J. P., Auch A. F., Klenk H.-P., Göker M. (2013). Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 14:60. 10.1186/1471-2105-14-60 PubMed DOI PMC

Meier-Kolthoff J. P., Göker M. (2019). TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 10:2182. 10.1038/s41467-019-10210-3 PubMed DOI PMC

Nguyen L.-T., Schmidt H. A., von Haeseler A., Minh B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32 268–274. 10.1093/molbev/msu300 PubMed DOI PMC

Ogawara H. (2016). Self-resistance in Streptomyces, with special reference to β-Lactam antibiotics. Molecules 21:605. 10.3390/molecules21050605 PubMed DOI PMC

Ohnishi Y., Ishikawa J., Hara H., Suzuki H., Ikenoya M., Ikeda H., et al. (2008). Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J. Bacteriol. 190 4050–4060. 10.1128/JB.00204-08 PubMed DOI PMC

Onaka H., Tanifguchi S.-I., Igarashi Y., Furumai T. (2002). Cloning of the Staurosporine biosynthetic gene cluster from Streptomyces sp. TP-A0274 and its heterologous expression in Streptomyces lividans. J. Antibiot. 55 1063–1071. 10.7164/antibiotics.55.1063 PubMed DOI

Páčová Z., Kocur M. (1984). New medium for detection of esterase and gelatinase activity. Zentralbl Bakteriol. Mikrobiol. Hyg. A 258 69–73. 10.1016/S0176-6724(84)80010-3 PubMed DOI

Parte A. C. (2018). LPSN – List of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int. J. Syst. Evol. Microbiol. 68 1825–1829. 10.1099/ijsem.0.002786 PubMed DOI

Paulus C., Rebets Y., Tokovenko B., Nadmid S., Terekhova L. P., Myronovskyi M., et al. (2017). New natural products identified by combined genomics-metabolomics profiling of marine Streptomyces sp. MP131-18. Sci. Rep. 7:42382. 10.1038/srep42382 PubMed DOI PMC

Prabhu J., Schauwecker F., Grammel N., Keller U., Bernhard M. (2004). Functional expression of the ectoine hydroxylase gene (thpD) from Streptomyces chrysomallus in halomonas elongata. Appl. Environ. Microbiol. 70 3130–3132. 10.1128/AEM.70.5.3130-3132.2004 PubMed DOI PMC

Qiu Y., Wang S., Chen Z., Guo Y., Song Y. (2016). An active type I-E CRISPR-cas system identified in Streptomyces avermitilis. PLoS One 11:e0149533. 10.1371/journal.pone.0149533 PubMed DOI PMC

Raveendran S., Parameswaran B., Ummalyma S. B., Abraham A., Mathew A. K., Madhavan A., et al. (2018). Applications of microbial enzymes in food industry. Food Technol. Biotechnol. 56 16–30. 10.17113/ftb.56.01.18.5491 PubMed DOI PMC

Redenbach M., Kieser H. M., Denapaite D., Eichner A., Cullum J., Kinashi H., et al. (1996). A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol. Microbiol. 21 77–96. 10.1046/j.1365-2958.1996.6191336.x PubMed DOI

Richter M., Rosselló-Móra R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. U.S.A. 106 19126–19131. 10.1073/pnas.0906412106 PubMed DOI PMC

Saeng-in P., Phongsopitanun W., Savarajara A., Tanasupawat S. (2018). Streptomyces lichenis sp. nov., isolated from lichen. Int. J. Syst. Evol. Microbiol. 68 3641–3646. 10.1099/ijsem.0.003052 PubMed DOI

Saitou N., Nei M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4 406–425. 10.1093/oxfordjournals.molbev.a040454 PubMed DOI

Sasser M. (1990). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Technical Note 101. Newark, DE: MIDI Inc.

Schumann P. (2011). “5 - Peptidoglycan Structure,” in Methods in Microbiology Taxonomy of Prokaryotes, eds Rainey F., Oren A. (Cambridge, MA: Academic Press; ), 101–129.

Ser H.-L., Law J. W.-F., Chaiyakunapruk N., Jacob S. A., Palanisamy U. D., Chan K.-G., et al. (2016). Fermentation conditions that affect clavulanic acid production in Streptomyces clavuligerus: A systematic review. Front. Microbiol. 7:522. 10.3389/fmicb.2016.00522 PubMed DOI PMC

Shaik M., Girija Sankar G., Iswarya M., Rajitha P. (2017). Isolation and characterization of bioactive metabolites producing marine Streptomyces parvulus strain sankarensis-A10. J. Genet. Engin. Biotechnol. 15 87–94. 10.1016/j.jgeb.2017.02.004 PubMed DOI PMC

Shepherd M. D., Kharel M. K., Bosserman M. A., Rohr J. (2010). Laboratory maintenance of Streptomyces species. Curr. Protoc. Microbiol. 10:10E.1. 10.1002/9780471729259.mc10e01s18 PubMed DOI PMC

Shirling E. B., Gottlieb D. (1966). Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16 313–340.

Song W., Sun H.-X., Zhang C., Cheng L., Peng Y., Deng Z., et al. (2019). Prophage Hunter: an integrative hunting tool for active prophages. Nucleic Acids Res. 47 W74–W80. 10.1093/nar/gkz380 PubMed DOI PMC

Sosio M., Gaspari E., Iorio M., Pessina S., Medema M. H., Bernasconi A., et al. (2018). Analysis of the pseudouridimycin biosynthetic pathway provides insights into the formation of C-nucleoside antibiotics. Cell. Chem. Biol. 25 540–549. 10.1016/j.chembiol.2018.02.008 PubMed DOI PMC

Taboada B., Estrada K., Ciria R., Merino E. (2018). Operon-mapper: a web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics 34 4118–4120. 10.1093/bioinformatics/bty496 PubMed DOI PMC

Tan L. T.-H., Ser H.-L., Yin W.-F., Chan K.-G., Lee L.-H., Goh B.-H., et al. (2015). Investigation of antioxidative and anticancer potentials of Streptomyces sp. MUM256 isolated from malaysia mangrove soil. Front. Microbiol. 6:1316. 10.3389/fmicb.2015.01316 PubMed DOI PMC

Tindall B. J. (1990a). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst. Appl. Microbiol. 13 128–130. 10.1016/S0723-2020(11)80158-X DOI

Tindall B. J. (1990b). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol. Lett. 66 199–202. 10.1111/j.1574-6968.1990.tb03996.x DOI

Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R. (2007). “Phenotypic Characterization and the Principles of Comparative Systematics,” in Methods for general and molecular microbiology, eds Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R. (Washington, DC: ASM Press; ), 330–393.

Urem M., Rossum T., van Bucca G., Moolenaar G. F., Laing E., Świa̧tek-Połatyńska M. A., et al. (2016). OsdR of Streptomyces coelicolor and the dormancy regulator DevR of Mycobacterium tuberculosis control overlapping regulons. mSystems 1:e00014–16. 10.1128/mSystems.00014-16 PubMed DOI PMC

Waksman S. A., Bugie E., Schatz A. (1944). Isolation of antibiotic substances from soil micro-organisms, with special reference to Streptothricin and Streptomycin. Proc. Staff Meet. Mayo Clin. 19 537–548.

Waksman S. A., Henrici A. T. (1943). The nomenclature and classification of the Actinomycetes1. J. Bacteriol. 46 337–341. PubMed PMC

Walker B. J., Abeel T., Shea T., Priest M., Abouelliel A., Sakthikumar S., et al. (2014). Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963. 10.1371/journal.pone.0112963 PubMed DOI PMC

Weiss D., Sampson T. (2014). CRISPR-Cas systems: new players in gene regulation and bacterial physiology. Front. Cell. Infect. Microbiol. 4:37. 10.3389/fcimb.2014.00037 PubMed DOI PMC

Westra E. R., van Erp P. B. G., Künne T., Wong S. P., Staals R. H. J., Seegers C. L. C., et al. (2012). CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol. Cell. 46 595–605. 10.1016/j.molcel.2012.03.018 PubMed DOI PMC

Yoon S.-H., Ha S.-M., Kwon S., Lim J., Kim Y., Seo H., et al. (2017). Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67 1613–1617. 10.1099/ijsem.0.001755 PubMed DOI PMC

Zhang H., Yohe T., Huang L., Entwistle S., Wu P., Yang Z., et al. (2018). dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46 W95–W101. 10.1093/nar/gky418 PubMed DOI PMC

Zhang M. M., Wong F. T., Wang Y., Luo S., Lim Y. H., Heng E., et al. (2017). CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat. Chem. Biol. 13 607–609. 10.1038/nchembio.2341 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...