The sensitivity of ECG contamination to surgical implantation site in brain computer interfaces
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
K23 NS099380
NINDS NIH HHS - United States
MC_UU_00003/3
Medical Research Council - United Kingdom
MC_UU_12024/1
Medical Research Council - United Kingdom
PubMed
34428554
PubMed Central
PMC8460992
DOI
10.1016/j.brs.2021.08.016
PII: S1935-861X(21)00218-7
Knihovny.cz E-zdroje
- Klíčová slova
- Artifacts, Brain computer interface, Deep brain stimulation, Neuromodulation, Oscillations,
- MeSH
- algoritmy MeSH
- artefakty MeSH
- elektrokardiografie MeSH
- esenciální tremor * MeSH
- lidé MeSH
- rozhraní mozek-počítač * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Brain sensing devices are approved today for Parkinson's, essential tremor, and epilepsy therapies. Clinical decisions for implants are often influenced by the premise that patients will benefit from using sensing technology. However, artifacts, such as ECG contamination, can render such treatments unreliable. Therefore, clinicians need to understand how surgical decisions may affect artifact probability. OBJECTIVES: Investigate neural signal contamination with ECG activity in sensing enabled neurostimulation systems, and in particular clinical choices such as implant location that impact signal fidelity. METHODS: Electric field modeling and empirical signals from 85 patients were used to investigate the relationship between implant location and ECG contamination. RESULTS: The impact on neural recordings depends on the difference between ECG signal and noise floor of the electrophysiological recording. Empirically, we demonstrate that severe ECG contamination was more than 3.2x higher in left-sided subclavicular implants (48.3%), when compared to right-sided implants (15.3%). Cranial implants did not show ECG contamination. CONCLUSIONS: Given the relative frequency of corrupted neural signals, we conclude that implant location will impact the ability of brain sensing devices to be used for "closed-loop" algorithms. Clinical adjustments such as implant location can significantly affect signal integrity and need consideration.
Department of Neurological Surgery University of California San Francisco San Francisco CA 94143 USA
Department of Neurology Bern University Hospital and University of Bern Bern Switzerland
Department of Neurology Massachusetts General Hospital and Harvard Medical School Boston MA USA
Department of Neurology University of California San Francisco San Francisco CA 94143 USA
Department of Neurosurgery Bern University Hospital and University of Bern Bern Switzerland
Department of Neurosurgery Charité Universitätsmedizin Berlin Chariteplatz 1 10117 Berlin Germany
Department of Neurosurgery Massachusetts General Hospital and Harvard Medical School Boston MA USA
Department of Neurosurgery Medizinische Hochschule Hannover Hannover Germany
Zobrazit více v PubMed
Cagnan H., Denison T., McIntyre C., Brown P. Emerging technologies for improved deep brain stimulation. Nat Biotechnol. 2019;37:1024–1033. doi: 10.1038/s41587-019-0244-6. PubMed DOI PMC
Krauss J.K., Lipsman N., Aziz T., Boutet A., Brown P., Chang J.W. Technology of deep brain stimulation: current status and future directions. Nat Rev Neurol. 2020 doi: 10.1038/s41582-020-00426-z. PubMed DOI PMC
Little S., Pogosyan A., Neal S., Zavala B., Zrinzo L., Hariz M. Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol. 2013 doi: 10.1002/ana.23951. PubMed DOI PMC
Arlotti M., Marceglia S., Foffani G., Volkmann J., Lozano A.M., Moro E. Eight-hours adaptive deep brain stimulation in patients with Parkinson disease. Neurology. 2018 doi: 10.1212/WNL.0000000000005121. PubMed DOI PMC
Meidahl A.C., Tinkhauser G., Herz D.M., Cagnan H., Debarros J., Brown P. Adaptive deep brain stimulation for movement disorders: the long road to clinical therapy. Mov Disord. 2017;32:810–819. doi: 10.1002/mds.27022. PubMed DOI PMC
Rosin B., Slovik M., Mitelman R., Rivlin-Etzion M., Haber S.N., Israel Z. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron. 2011;72:370–384. doi: 10.1016/j.neuron.2011.08.023. PubMed DOI
Neumann W.-J., Degen K., Schneider G.-H., Brücke C., Huebl J., Brown P. Subthalamic synchronized oscillatory activity correlates with motor impairment in patients with Parkinson's disease. Mov Disord. 2016;31:1748–1751. doi: 10.1002/mds.26759. PubMed DOI PMC
Kuhn A.A., Kupsch A., Schneider G.H., Brown P. Reduction in subthalamic 8-35 Hz oscillatory activity correlates with clinical improvement in Parkinson's disease. Eur J Neurosci. 2006;23 France. PubMed
Kehnemouyi Y.M., Wilkins K.B., Anidi C.M., Anderson R.W., Afzal M.F., Bronte-Stewart H.M. Modulation of beta bursts in subthalamic sensorimotor circuits predicts improvement in bradykinesia. Brain. 2020 doi: 10.1093/brain/awaa394. PubMed DOI PMC
Eusebio A., Thevathasan W., Doyle Gaynor L., Pogosyan A., Bye E., Foltynie T. Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients. J Neurol Neurosurg Psychiatry. 2011;82:569–573. PubMed PMC
Kühn A.A., Kempf F., Brücke C., Gaynor Doyle L., Martinez-Torres I., Pogosyan A. High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson's disease in parallel with improvement in motor performance. J Neurosci. 2008;28:6165–6173. PubMed PMC
Neumann W.-J., Turner R.S., Blankertz B., Mitchell T., Kühn A.A., Richardson R.M. Toward electrophysiology-based intelligent adaptive deep brain stimulation for movement disorders. Neurotherapeutics. 2019;16 doi: 10.1007/s13311-018-00705-0. PubMed DOI PMC
Kokkinos V., Sisterson N.D., Wozny T.A., Richardson R.M. Association of closed-loop brain stimulation neurophysiological features with seizure control among patients with focal epilepsy. JAMA Neurol. 2019;76:800–808. doi: 10.1001/jamaneurol.2019.0658. PubMed DOI PMC
Neumann W.J., Turner R.S., Blankertz B., Mitchell T., Kühn A.A., Richardson R.M. Toward electrophysiology-based intelligent adaptive deep brain stimulation for movement disorders. Neurotherapeutics. 2019 doi: 10.1007/s13311-018-00705-0. PubMed DOI PMC
Kühn A.A., Volkmann J. Innovations in deep brain stimulation methodology. Mov Disord. 2017 Jan;32(1):11–19. doi: 10.1002/mds.26703. Epub 2016 Jul 12. PubMed DOI
Thakor N.V. From holter monitors to automatic defibrillators: developments in ambulatory arrhythmia monitoring. IEEE Trans Biomed Eng. 1984 doi: 10.1109/TBME.1984.325237. BME-31:770–8. PubMed DOI
Anidi C., O'Day J.J., Anderson R.W., Afzal M.F., Syrkin-Nikolau J., Velisar A. Neuromodulation targets pathological not physiological beta bursts during gait in Parkinson's disease. Neurobiol Dis. 2018;120:107–117. doi: 10.1016/j.nbd.2018.09.004. PubMed DOI PMC
Neumann W.J., Staub-Bartelt F., Horn A., Schanda J., Schneider G.H., Brown P. Long term correlation of subthalamic beta band activity with motor impairment in patients with Parkinson's disease. Clin Neurophysiol. 2017 doi: 10.1016/j.clinph.2017.08.028. PubMed DOI PMC
Stanslaski S., Afshar P., Cong P., Giftakis J., Stypulkowski P., Carlson D. Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Trans Neural Syst Rehabil Eng. 2012;20:410–421. doi: 10.1109/TNSRE.2012.2183617. PubMed DOI
Sorkhabi M.M., Benjaber M., Brown P., Denison T. IEEE Int. Conf. Syst. Man, Cybern., IEEE; 2020. Physiological artifacts and the implications for brain-machine-interface design. 2020, p. 1498–1498. PubMed DOI PMC
Feher J.J. Academic Press; 2012. 5.6 - the electrocardiogram. Quant. Hum. Physiol. An introd. pp. 467–476.
Nomura M., Nakaya Y., Miyoshi Y., Wakatsuki T., Saito K., Bando S. Single moving dipole obtained from magnetic field of the heart in patients with left ventricular hypertrophy. Clin Cardiol. 1992;15:752–758. doi: 10.1002/CLC.4960151013. PubMed DOI
Neumann W.-J., Horn A., Ewert S., Huebl J., Brücke C., Slentz C. A localized pallidal physiomarker in cervical dystonia. Ann Neurol. 2017;82:912–924. doi: 10.1002/ana.25095. PubMed DOI
Neumann W.-J., Huebl J., Brücke C., Ruiz M.H., Kupsch A., Schneider G.-H. Enhanced low-frequency oscillatory activity of the subthalamic nucleus in a patient with dystonia. Mov Disord. 2012;27 doi: 10.1002/mds.25078. PubMed DOI
Tan H., Debarros J., He S., Pogosyan A., Aziz T.Z., Huang Y. Decoding voluntary movements and postural tremor based on thalamic LFPs as a basis for closed-loop stimulation for essential tremor. Brain Stimul. 2019;12:858–867. doi: 10.1016/j.brs.2019.02.011. PubMed DOI PMC
Neumann W.-J., Huebl J., Brücke C., Lofredi R., Horn A., Saryyeva A. Pallidal and thalamic neural oscillatory patterns in Tourette syndrome. Ann Neurol. 2018 doi: 10.1002/ana.25311. PubMed DOI
Molina R., Okun M.S., Shute J.B., Opri E., Rossi P.J., Martinez-Ramirez D. Report of a patient undergoing chronic responsive deep brain stimulation for Tourette syndrome: proof of concept. J Neurosurg. 2017;1–7 doi: 10.3171/2017.6.jns17626. PubMed DOI PMC
Neumann W.-J., Huebl J., Brücke C., Gabriëls L., Bajbouj M., Merkl A. Different patterns of local field potentials from limbic DBS targets in patients with major depressive and obsessive compulsive disorder. Mol Psychiatr. 2014;19 doi: 10.1038/mp.2014.2. PubMed DOI PMC
Sinclair N.C., McDermott H.J., Bulluss K.J., Fallon J.B., Perera T., Xu S.S. Subthalamic nucleus deep brain stimulation evokes resonant neural activity. Ann Neurol. 2018;83:1027–1031. doi: 10.1002/ana.25234. PubMed DOI PMC
Swann N.C., De Hemptinne C., Thompson M.C., Miocinovic S., Miller A.M., Gilron R. Adaptive deep brain stimulation for Parkinson's disease using motor cortex sensing. J Neural Eng. 2018 doi: 10.1088/1741-2552/aabc9b. PubMed DOI PMC
Opri E., Cernera S., Molina R., Eisinger R.S., Cagle J.N., Almeida L. Chronic embedded cortico-thalamic closed-loop deep brain stimulation for the treatment of essential tremor. Sci Transl Med. 2020;12 doi: 10.1126/scitranslmed.aay7680. PubMed DOI PMC
Gilron R., Little S., Perrone R., Wilt R., Hemptinne C De, Yaroshinsky M.S. Long-term wireless streaming of neural recordings for circuit discovery and adaptive stimulation in individuals with Parkinson's disease. Nat Biotechnol. 2021:1–22. doi: 10.1038/s41587-021-00897-5. PubMed DOI PMC
Houston B., Thompson M., Ko A., Chizeck H. A machine-learning approach to volitional control of a closed-loop deep brain stimulation system. J Neural Eng. 2019;16 doi: 10.1088/1741-2552/aae67f. PubMed DOI
Johnson V., Wilt R., Gilron R., Anso J., Perrone R., Beudel M. Embedded adaptive deep brain stimulation for cervical dystonia controlled by motor cortex theta oscillations. Exp Neurol. 2021:113825. doi: 10.1016/J.EXPNEUROL.2021.113825. PubMed DOI
Chen Y., Ma B., Hao H., Li L. Removal of electrocardiogram artifacts from local field potentials recorded by sensing-enabled neurostimulator. Front Neurosci. 2021;15:226. doi: 10.3389/FNINS.2021.637274. PubMed DOI PMC