The sensitivity of ECG contamination to surgical implantation site in brain computer interfaces

. 2021 Sep-Oct ; 14 (5) : 1301-1306. [epub] 20210821

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34428554

Grantová podpora
K23 NS099380 NINDS NIH HHS - United States
MC_UU_00003/3 Medical Research Council - United Kingdom
MC_UU_12024/1 Medical Research Council - United Kingdom

Odkazy

PubMed 34428554
PubMed Central PMC8460992
DOI 10.1016/j.brs.2021.08.016
PII: S1935-861X(21)00218-7
Knihovny.cz E-zdroje

BACKGROUND: Brain sensing devices are approved today for Parkinson's, essential tremor, and epilepsy therapies. Clinical decisions for implants are often influenced by the premise that patients will benefit from using sensing technology. However, artifacts, such as ECG contamination, can render such treatments unreliable. Therefore, clinicians need to understand how surgical decisions may affect artifact probability. OBJECTIVES: Investigate neural signal contamination with ECG activity in sensing enabled neurostimulation systems, and in particular clinical choices such as implant location that impact signal fidelity. METHODS: Electric field modeling and empirical signals from 85 patients were used to investigate the relationship between implant location and ECG contamination. RESULTS: The impact on neural recordings depends on the difference between ECG signal and noise floor of the electrophysiological recording. Empirically, we demonstrate that severe ECG contamination was more than 3.2x higher in left-sided subclavicular implants (48.3%), when compared to right-sided implants (15.3%). Cranial implants did not show ECG contamination. CONCLUSIONS: Given the relative frequency of corrupted neural signals, we conclude that implant location will impact the ability of brain sensing devices to be used for "closed-loop" algorithms. Clinical adjustments such as implant location can significantly affect signal integrity and need consideration.

Zobrazit více v PubMed

Cagnan H., Denison T., McIntyre C., Brown P. Emerging technologies for improved deep brain stimulation. Nat Biotechnol. 2019;37:1024–1033. doi: 10.1038/s41587-019-0244-6. PubMed DOI PMC

Krauss J.K., Lipsman N., Aziz T., Boutet A., Brown P., Chang J.W. Technology of deep brain stimulation: current status and future directions. Nat Rev Neurol. 2020 doi: 10.1038/s41582-020-00426-z. PubMed DOI PMC

Little S., Pogosyan A., Neal S., Zavala B., Zrinzo L., Hariz M. Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol. 2013 doi: 10.1002/ana.23951. PubMed DOI PMC

Arlotti M., Marceglia S., Foffani G., Volkmann J., Lozano A.M., Moro E. Eight-hours adaptive deep brain stimulation in patients with Parkinson disease. Neurology. 2018 doi: 10.1212/WNL.0000000000005121. PubMed DOI PMC

Meidahl A.C., Tinkhauser G., Herz D.M., Cagnan H., Debarros J., Brown P. Adaptive deep brain stimulation for movement disorders: the long road to clinical therapy. Mov Disord. 2017;32:810–819. doi: 10.1002/mds.27022. PubMed DOI PMC

Rosin B., Slovik M., Mitelman R., Rivlin-Etzion M., Haber S.N., Israel Z. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron. 2011;72:370–384. doi: 10.1016/j.neuron.2011.08.023. PubMed DOI

Neumann W.-J., Degen K., Schneider G.-H., Brücke C., Huebl J., Brown P. Subthalamic synchronized oscillatory activity correlates with motor impairment in patients with Parkinson's disease. Mov Disord. 2016;31:1748–1751. doi: 10.1002/mds.26759. PubMed DOI PMC

Kuhn A.A., Kupsch A., Schneider G.H., Brown P. Reduction in subthalamic 8-35 Hz oscillatory activity correlates with clinical improvement in Parkinson's disease. Eur J Neurosci. 2006;23 France. PubMed

Kehnemouyi Y.M., Wilkins K.B., Anidi C.M., Anderson R.W., Afzal M.F., Bronte-Stewart H.M. Modulation of beta bursts in subthalamic sensorimotor circuits predicts improvement in bradykinesia. Brain. 2020 doi: 10.1093/brain/awaa394. PubMed DOI PMC

Eusebio A., Thevathasan W., Doyle Gaynor L., Pogosyan A., Bye E., Foltynie T. Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients. J Neurol Neurosurg Psychiatry. 2011;82:569–573. PubMed PMC

Kühn A.A., Kempf F., Brücke C., Gaynor Doyle L., Martinez-Torres I., Pogosyan A. High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson's disease in parallel with improvement in motor performance. J Neurosci. 2008;28:6165–6173. PubMed PMC

Neumann W.-J., Turner R.S., Blankertz B., Mitchell T., Kühn A.A., Richardson R.M. Toward electrophysiology-based intelligent adaptive deep brain stimulation for movement disorders. Neurotherapeutics. 2019;16 doi: 10.1007/s13311-018-00705-0. PubMed DOI PMC

Kokkinos V., Sisterson N.D., Wozny T.A., Richardson R.M. Association of closed-loop brain stimulation neurophysiological features with seizure control among patients with focal epilepsy. JAMA Neurol. 2019;76:800–808. doi: 10.1001/jamaneurol.2019.0658. PubMed DOI PMC

Neumann W.J., Turner R.S., Blankertz B., Mitchell T., Kühn A.A., Richardson R.M. Toward electrophysiology-based intelligent adaptive deep brain stimulation for movement disorders. Neurotherapeutics. 2019 doi: 10.1007/s13311-018-00705-0. PubMed DOI PMC

Kühn A.A., Volkmann J. Innovations in deep brain stimulation methodology. Mov Disord. 2017 Jan;32(1):11–19. doi: 10.1002/mds.26703. Epub 2016 Jul 12. PubMed DOI

Thakor N.V. From holter monitors to automatic defibrillators: developments in ambulatory arrhythmia monitoring. IEEE Trans Biomed Eng. 1984 doi: 10.1109/TBME.1984.325237. BME-31:770–8. PubMed DOI

Anidi C., O'Day J.J., Anderson R.W., Afzal M.F., Syrkin-Nikolau J., Velisar A. Neuromodulation targets pathological not physiological beta bursts during gait in Parkinson's disease. Neurobiol Dis. 2018;120:107–117. doi: 10.1016/j.nbd.2018.09.004. PubMed DOI PMC

Neumann W.J., Staub-Bartelt F., Horn A., Schanda J., Schneider G.H., Brown P. Long term correlation of subthalamic beta band activity with motor impairment in patients with Parkinson's disease. Clin Neurophysiol. 2017 doi: 10.1016/j.clinph.2017.08.028. PubMed DOI PMC

Stanslaski S., Afshar P., Cong P., Giftakis J., Stypulkowski P., Carlson D. Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Trans Neural Syst Rehabil Eng. 2012;20:410–421. doi: 10.1109/TNSRE.2012.2183617. PubMed DOI

Sorkhabi M.M., Benjaber M., Brown P., Denison T. IEEE Int. Conf. Syst. Man, Cybern., IEEE; 2020. Physiological artifacts and the implications for brain-machine-interface design. 2020, p. 1498–1498. PubMed DOI PMC

Feher J.J. Academic Press; 2012. 5.6 - the electrocardiogram. Quant. Hum. Physiol. An introd. pp. 467–476.

Nomura M., Nakaya Y., Miyoshi Y., Wakatsuki T., Saito K., Bando S. Single moving dipole obtained from magnetic field of the heart in patients with left ventricular hypertrophy. Clin Cardiol. 1992;15:752–758. doi: 10.1002/CLC.4960151013. PubMed DOI

Neumann W.-J., Horn A., Ewert S., Huebl J., Brücke C., Slentz C. A localized pallidal physiomarker in cervical dystonia. Ann Neurol. 2017;82:912–924. doi: 10.1002/ana.25095. PubMed DOI

Neumann W.-J., Huebl J., Brücke C., Ruiz M.H., Kupsch A., Schneider G.-H. Enhanced low-frequency oscillatory activity of the subthalamic nucleus in a patient with dystonia. Mov Disord. 2012;27 doi: 10.1002/mds.25078. PubMed DOI

Tan H., Debarros J., He S., Pogosyan A., Aziz T.Z., Huang Y. Decoding voluntary movements and postural tremor based on thalamic LFPs as a basis for closed-loop stimulation for essential tremor. Brain Stimul. 2019;12:858–867. doi: 10.1016/j.brs.2019.02.011. PubMed DOI PMC

Neumann W.-J., Huebl J., Brücke C., Lofredi R., Horn A., Saryyeva A. Pallidal and thalamic neural oscillatory patterns in Tourette syndrome. Ann Neurol. 2018 doi: 10.1002/ana.25311. PubMed DOI

Molina R., Okun M.S., Shute J.B., Opri E., Rossi P.J., Martinez-Ramirez D. Report of a patient undergoing chronic responsive deep brain stimulation for Tourette syndrome: proof of concept. J Neurosurg. 2017;1–7 doi: 10.3171/2017.6.jns17626. PubMed DOI PMC

Neumann W.-J., Huebl J., Brücke C., Gabriëls L., Bajbouj M., Merkl A. Different patterns of local field potentials from limbic DBS targets in patients with major depressive and obsessive compulsive disorder. Mol Psychiatr. 2014;19 doi: 10.1038/mp.2014.2. PubMed DOI PMC

Sinclair N.C., McDermott H.J., Bulluss K.J., Fallon J.B., Perera T., Xu S.S. Subthalamic nucleus deep brain stimulation evokes resonant neural activity. Ann Neurol. 2018;83:1027–1031. doi: 10.1002/ana.25234. PubMed DOI PMC

Swann N.C., De Hemptinne C., Thompson M.C., Miocinovic S., Miller A.M., Gilron R. Adaptive deep brain stimulation for Parkinson's disease using motor cortex sensing. J Neural Eng. 2018 doi: 10.1088/1741-2552/aabc9b. PubMed DOI PMC

Opri E., Cernera S., Molina R., Eisinger R.S., Cagle J.N., Almeida L. Chronic embedded cortico-thalamic closed-loop deep brain stimulation for the treatment of essential tremor. Sci Transl Med. 2020;12 doi: 10.1126/scitranslmed.aay7680. PubMed DOI PMC

Gilron R., Little S., Perrone R., Wilt R., Hemptinne C De, Yaroshinsky M.S. Long-term wireless streaming of neural recordings for circuit discovery and adaptive stimulation in individuals with Parkinson's disease. Nat Biotechnol. 2021:1–22. doi: 10.1038/s41587-021-00897-5. PubMed DOI PMC

Houston B., Thompson M., Ko A., Chizeck H. A machine-learning approach to volitional control of a closed-loop deep brain stimulation system. J Neural Eng. 2019;16 doi: 10.1088/1741-2552/aae67f. PubMed DOI

Johnson V., Wilt R., Gilron R., Anso J., Perrone R., Beudel M. Embedded adaptive deep brain stimulation for cervical dystonia controlled by motor cortex theta oscillations. Exp Neurol. 2021:113825. doi: 10.1016/J.EXPNEUROL.2021.113825. PubMed DOI

Chen Y., Ma B., Hao H., Li L. Removal of electrocardiogram artifacts from local field potentials recorded by sensing-enabled neurostimulator. Front Neurosci. 2021;15:226. doi: 10.3389/FNINS.2021.637274. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...