Quantitative Assessment of Ciliary Ultrastructure with the Use of Automatic Analysis: PCD Quant
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
670119P
Univerzita Karlova v Praze
00064203
Motol University Hospital, Prague, Czech Republic
NV19-07-00210
Ministry of Health of the Czech Republic
PubMed
34441298
PubMed Central
PMC8394936
DOI
10.3390/diagnostics11081363
PII: diagnostics11081363
Knihovny.cz E-resources
- Keywords
- automatic analysis, cilia, primary ciliary dyskinesia, secondary ciliary dyskinesia,
- Publication type
- Journal Article MeSH
The ciliary ultrastructure can be damaged in various situations. Such changes include primary defects found in primary ciliary dyskinesia (PCD) and secondary defects developing in secondary ciliary dyskinesia (SCD). PCD is a genetic disease resulting from impaired ciliary motility causing chronic disease of the respiratory tract. SCD is an acquired condition that can be caused, for example, by respiratory infection or exposure to tobacco smoke. The diagnosis of these diseases is a complex process with many diagnostic methods, including the evaluation of ciliary ultrastructure using transmission electron microscopy (the golden standard of examination). Our goal was to create a program capable of automatic quantitative analysis of the ciliary ultrastructure, determining the ratio of primary and secondary defects, as well as analysis of the mutual orientation of cilia in the ciliary border. PCD Quant, a program developed for the automatic quantitative analysis of cilia, cannot yet be used as a stand-alone method for evaluation and provides limited assistance in classifying primary and secondary defect classes and evaluating central pair angle deviations. Nevertheless, we see great potential for the future in automatic analysis of the ciliary ultrastructure.
See more in PubMed
Powles-Glover N. Cilia and ciliopathies: Classic examples linking phenotype and genotype—An overview. Reprod. Toxicol. 2014;48:98–105. doi: 10.1016/j.reprotox.2014.05.005. PubMed DOI
Ishikawa T. Axoneme Structure from Motile Cilia. Cold Spring Harb. Perspect. Biol. 2017;9 doi: 10.1101/cshperspect.a028076. PubMed DOI PMC
Osinka A., Poprzeczko M., Zielinska M.M., Fabczak H., Joachimiak E., Wloga D. Ciliary Proteins: Filling the Gaps. Recent Advances in Deciphering the Protein Composition of Motile Ciliary Complexes. Cells. 2019;8:730. doi: 10.3390/cells8070730. PubMed DOI PMC
Pigino G., Ishikawa T. Axonemal radial spokes: 3D structure, function and assembly. Bioarchitecture. 2012;2:50–58. doi: 10.4161/bioa.20394. PubMed DOI PMC
Bower R., Tritschler D., Vanderwaal K., Perrone C.A., Mueller J., Fox L., Sale W.S., Porter M.E. The N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes. Mol. Biol. Cell. 2013;24:1134–1152. doi: 10.1091/mbc.e12-11-0801. PubMed DOI PMC
Chaaban S., Brouhard G.J. A microtubule bestiary: Structural diversity in tubulin polymers. Mol. Biol. Cell. 2017;28:2924–2931. doi: 10.1091/mbc.e16-05-0271. PubMed DOI PMC
King S.M. Axonemal Dynein Arms. Cold Spring Harb. Perspect. Biol. 2016;8 doi: 10.1101/cshperspect.a028100. PubMed DOI PMC
Bustamante-Marin X.M., Ostrowski L.E. Cilia and Mucociliary Clearance. Cold Spring Harb. Perspect. Biol. 2017;9 doi: 10.1101/cshperspect.a028241. PubMed DOI PMC
Boon M., Smits A., Cuppens H., Jaspers M., Proesmans M., Dupont L.J., Vermeulen F.L., Van Daele S., Malfroot A., Godding V., et al. Primary ciliary dyskinesia: Critical evaluation of clinical symptoms and diagnosis in patients with normal and abnormal ultrastructure. Orphanet J. Rare Dis. 2014;9:11. doi: 10.1186/1750-1172-9-11. PubMed DOI PMC
Bertrand B., Collet S., Eloy P., Rombaux P. Secondary ciliary dyskinesia in upper respiratory tract. Acta Otorhinolaryngol. Belg. 2000;54:309–316. PubMed
Lobo J., Zariwala M.A., Noone P.G. Primary ciliary dyskinesia. Semin. Respir. Crit. Care Med. 2015;36:169–179. doi: 10.1055/s-0035-1546748. PubMed DOI PMC
Marshall W.F., Kintner C. Cilia orientation and the fluid mechanics of development. Curr. Opin. Cell Biol. 2008;20:48–52. doi: 10.1016/j.ceb.2007.11.009. PubMed DOI PMC
Fahy J.V., Dickey B.F. Airway mucus function and dysfunction. N. Engl. J. Med. 2010;363:2233–2247. doi: 10.1056/NEJMra0910061. PubMed DOI PMC
Mirra V., Werner C., Santamaria F. Primary Ciliary Dyskinesia: An Update on Clinical Aspects, Genetics, Diagnosis, and Future Treatment Strategies. Front. Pediatr. 2017;5:135. doi: 10.3389/fped.2017.00135. PubMed DOI PMC
Popatia R., Haver K., Casey A. Primary Ciliary Dyskinesia: An Update on New Diagnostic Modalities and Review of the Literature. Pediatr. Allergy Immunol. Pulmonol. 2014;27:51–59. doi: 10.1089/ped.2013.0314. PubMed DOI PMC
Lucas J.S., Burgess A., Mitchison H.M., Moya E., Williamson M., Hogg C. Diagnosis and management of primary ciliary dyskinesia. Arch. Dis. Child. 2014;99:850–856. doi: 10.1136/archdischild-2013-304831. PubMed DOI PMC
Chilvers M.A., O’Callaghan C. Analysis of ciliary beat pattern and beat frequency using digital high speed imaging: Comparison with the photomultiplier and photodiode methods. Thorax. 2000;55:314–317. doi: 10.1136/thorax.55.4.314. PubMed DOI PMC
Kuehni C.E., Lucas J.S. Diagnosis of primary ciliary dyskinesia: Summary of the ERS Task Force report. Breathe. 2017;13:166–178. doi: 10.1183/20734735.008517. PubMed DOI PMC
Haarman E.G., Schmidts M. Accuracy of diagnostic testing in primary ciliary dyskinesia: Are we there yet? Eur. Respir. J. 2016;47:699–701. doi: 10.1183/13993003.01914-2015. PubMed DOI
Shoemark A., Boon M., Brochhausen C., Bukowy-Bieryllo Z., Margherita De Santi M., Goggin P., Griffin P., Hegele R.G., Hirst R.A., Leigh M.W., et al. International consensus guideline for reporting transmission electron microscopy results in the diagnosis of Primary Ciliary Dyskinesia (BEAT PCD TEM Criteria) Eur. Respir. J. 2020:1900725. doi: 10.1183/13993003.00725-2019. PubMed DOI
Sirvanci S., Seda Uyan Z., Ercan F., Karadag B., Ersu R., Karakoc F., Dagli E., San T. Quantitative analysis of ciliary ultrastructure in patients with primary ciliary dyskinesia. Acta Histochem. 2008;110:34–41. doi: 10.1016/j.acthis.2007.05.006. PubMed DOI
Shoemark A., Pinto A.L., Patel M.P., Daudvohra F., Hogg C., Mitchison H.M., Burgoyne T. PCD Detect: Enhancing ciliary features through image averaging and classification. Am. J. Physiol. Lung Cell Mol. Physiol. 2020;319:L1048–L1060. doi: 10.1152/ajplung.00264.2020. PubMed DOI
Hill D.B., Swaminathan V., Estes A., Cribb J., O’Brien E.T., Davis C.W., Superfine R. Force generation and dynamics of individual cilia under external loading. Biophys. J. 2010;98:57–66. doi: 10.1016/j.bpj.2009.09.048. PubMed DOI PMC
Rutland J., de Iongh R.U. Random ciliary orientation. A cause of respiratory tract disease. N. Engl. J. Med. 1990;323:1681–1684. doi: 10.1056/NEJM199012133232406. PubMed DOI
Gil H.I., Lee T., Jeong B.H., Lee H., Choe J., Ahn K., Hong S.D., Jeon K., Koh W.J., Kim J.S., et al. Additional role of bronchial mucosal biopsy for ciliary structural abnormality in diagnosis of primary ciliary dyskinesia. J. Thorac. Dis. 2019;11:839–847. doi: 10.21037/jtd.2019.02.24. PubMed DOI PMC
Rutland J., Dewar A., Cox T., Cole P. Nasal brushing for the study of ciliary ultrastructure. J. Clin. Pathol. 1982;35:357–359. doi: 10.1136/jcp.35.3.357. PubMed DOI PMC
Dixon M., Shoemark A. Secondary defects detected by transmission electron microscopy in primary ciliary dyskinesia diagnostics. Ultrastruct. Pathol. 2017;41:390–398. doi: 10.1080/01913123.2017.1365990. PubMed DOI
Lin T.Y., Goyal P., Girshick R., He K., Dollar P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020;42:318–327. doi: 10.1109/TPAMI.2018.2858826. PubMed DOI
He K., Zhang X., Ren S., Sun J. Deep Residual Learning for Image Recognition; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Las Vegas, NV, USA. 1–26 July 2016; pp. 770–778. DOI
Lin T., Dollár P., Girshick R., He K., Hariharan B., Belongie S. Feature Pyramid Networks for Object Detection; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Honolulu, HI, USA. 21–26 July 2017; DOI
Kingma D., Ba J. Adam: A Method for Stochastic Optimization. arXiv. 20151412.6980
Lalkhen A., McCluskey A. Clinical tests: Sensitivity and specificity. Contin. Educ. Anaesth. Crit. Care Pain. 2008;8:221–223. doi: 10.1093/bjaceaccp/mkn041. DOI
McHugh M. Interrater reliability: The kappa statistic. Biochem. Med. 2012;22:276–282. doi: 10.11613/BM.2012.031. PubMed DOI PMC
Pinto A.L., Rai R.K., Hogg C., Burgoyne T. Ciliary Feature Counter: A program for the Quantitative Assessment of Cilia to Diagnose Primary Ciliary Dyskinesia. Diagnostics. 2020;10:524. doi: 10.3390/diagnostics10080524. PubMed DOI PMC