A New Definition of the Stationary Phase Volume in Mixed-Mode Chromatographic Columns in Hydrophilic Liquid Chromatography
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34443406
PubMed Central
PMC8400792
DOI
10.3390/molecules26164819
PII: molecules26164819
Knihovny.cz E-zdroje
- Klíčová slova
- hydrophilic interaction, liquid chromatography, polar columns, stationary and mobile phase,
- Publikační typ
- časopisecké články MeSH
Polar columns used in the HILIC (Hydrophilic Interaction Liquid Chromatography) systems take up water from the mixed aqueous-organic mobile phases in excess of the water concentration in the bulk mobile phase. The adsorbed water forms a diffuse layer, which becomes a part of the HILIC stationary phase and plays dominant role in the retention of polar compounds. It is difficult to fix the exact boundary between the diffuse stationary and the bulk mobile phase, hence determining the column hold-up volume is subject to errors. Adopting a convention that presumes that the volume of the adsorbed water can be understood as the column stationary phase volume enables unambiguous determination of the volumes of the stationary and of the mobile phases in the column, which is necessary for obtaining thermodynamically correct chromatographic data in HILIC systems. The volume of the aqueous stationary phase, Vex, can be determined experimentally by frontal analysis combined with Karl Fischer titration method, yielding isotherms of water adsorbed on polar columns, which allow direct prediction of the effects of the composition of aqueous-organic mobile phase on the retention in HILIC systems, and more accurate determination of phase volumes in columns and consistent retention data for any mobile phase composition. The n phase volume ratios of 18 columns calculated according to the new phase convention strongly depend on the type of the polar column. Zwitterionic and TSK gel amide and amine columns show especially strong water adsorption.
Zobrazit více v PubMed
Alpert A.J. Hydrophilic-interaction chromatography for the separation of peptides, nucleic-acid and other polar compounds. J. Chromatogr. 1990;499:177–196. doi: 10.1016/S0021-9673(00)96972-3. PubMed DOI
Melnikov S.M., Holtzel A., Seidel-Morgenstern A., Tallarek U. Composition, Structure, and Mobility of Water-Acetonitrile Mixtures in a Silica Nanopore Studied by Molecular Dynamics Simulations. Anal. Chem. 2011;83:2569–2575. doi: 10.1021/ac102847m. PubMed DOI
Wikberg E., Sparrman T., Viklund C., Jonsson T., Irgum K. A H-2 nuclear magnetic resonance study of the state of water in neat silica and zwitterionic stationary phases and its influence on the chromatographic retention characteristics in hydrophilic interaction high-performance liquid chromatography. J. Chromatogr. A. 2011;1218:6630–6638. doi: 10.1016/j.chroma.2011.04.056. PubMed DOI
Jandera P., Janas P. Recent advances in stationary phases and understanding of retention in hydrophilic interaction chromatography. A review. Anal. Chim. Acta. 2017;967:12–32. doi: 10.1016/j.aca.2017.01.060. PubMed DOI
Melander W.R., Horváth C. Reversed-Phase Chromatography. Volume 2 Academic Press; New York, NY, USA: 1980.
Engelhardt W.H. Hochdruck-Flussigkeits-Chromatographie. 2nd ed. Springer; Berlin/Heidelberg, Germany: 1977.
McCalley D.V., Neue U.D. Estimation of the extent of the water-rich layer associated with the silica surface in hydrophilic interaction chromatography. J. Chromatogr. A. 2008;1192:225–229. doi: 10.1016/j.chroma.2008.03.049. PubMed DOI
Slaats E.H., Kraak J.C., Brugman W.J.T., Poppe H. Study of influence of competition and solvent interaction on retention in liquid-solid chromatography by measurement of activity-coefficients in mobile phase. J. Chromatogr. 1978;149:255–270. doi: 10.1016/S0021-9673(00)80991-7. DOI
Kazakevich Y.V., McNair H.M. Study of the excess adsorption of the eluent components on different reversed-phase adsorbents. J. Chromatogr. Sci. 1995;33:321–327. doi: 10.1093/chromsci/33.6.321. DOI
Vajda P., Felinger A., Guiochon G. Evaluation of surface excess isotherms in liquid chromatography. J. Chromatogr. A. 2013;1291:41–47. doi: 10.1016/j.chroma.2013.03.023. PubMed DOI
Berendsen G.E., Schoenmakers P.J., Galan L.D., Vigh G., Vargapuchony Z. On the determination of the hold-up time in reversed phase liquid-chromatography. J. Liq. Chromatogr. 1980;3:1669–1686. doi: 10.1080/01483918008064759. DOI
Rimmer C.A., Simmons C.R., Dorsey J.G. The measurement and meaning of void volumes in reversed-phase liquid chromatography. J. Chromatogr. A. 2002;965:219–232. doi: 10.1016/S0021-9673(02)00730-6. PubMed DOI
Riedo F., Kovats E.S. Adsorption from liquid-mixtrures and liquid-chromatography. J. Chromatogr. 1982;239:1–28. doi: 10.1016/S0021-9673(00)81964-0. PubMed DOI
Dinh N.P., Jonsson T., Irgum K. Water uptake on polar stationary phases under conditions for hydrophilic interaction chromatography and its relation to solute retention. J. Chromatogr. A. 2013;1320:33–47. doi: 10.1016/j.chroma.2013.09.061. PubMed DOI
Guo Y., Bhaladia N., Fattel B., Serris J. Evaluating the adsorbed water layer on polar stationary phases for hydrophilic interaction chromatography (HILIC) Separations. 2019;6:19. doi: 10.3390/separations6020019. DOI
Soukup J., Jandera P. Adsorption of water from aqueous acetonitrile on silica-based stationary phases in aqueous normal-phase liquid chromatography. J. Chromatogr. A. 2014;1374:102–111. doi: 10.1016/j.chroma.2014.11.028. PubMed DOI
Langmuir I. The comnstituion and fundamental properties of solid and liquids. Part I. Solids. J. Am. Chem. Soc. 1916;38:2221–2295. doi: 10.1021/ja02268a002. DOI