Inorganic Salts of N-phenylbiguanidium(1+)-Novel Family with Promising Representatives for Nonlinear Optics

. 2021 Aug 05 ; 22 (16) : . [epub] 20210805

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34445122

Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000417 Ministerstvo Školství, Mládeže a Tělovýchovy

Seven inorganic salts containing N-phenylbiguanide as a prospective organic molecular carrier of nonlinear optical properties were prepared and studied within our research of novel hydrogen-bonded materials for nonlinear optics (NLO). All seven salts, namely N-phenylbiguanidium(1+) nitrate (C2/c), N-phenylbiguanidium(1+) perchlorate (P-1), N-phenylbiguanidium(1+) hydrogen carbonate (P21/c), bis(N-phenylbiguanidium(1+)) sulfate (C2), bis(N-phenylbiguanidium(1+)) hydrogen phosphate sesquihydrate (P-1), bis(N-phenylbiguanidium(1+)) phosphite (P21), and bis(N-phenylbiguanidium(1+)) phosphite dihydrate (P21/n), were characterised by X-ray diffraction (powder and single-crystal X-ray diffraction) and by vibrational spectroscopy (FTIR and Raman). Two salts with non-centrosymmetric crystal structures-bis(N-phenylbiguanidium(1+)) sulfate and bis(N-phenylbiguanidium(1+)) phosphite-were further studied to examine their linear and nonlinear optical properties using experimental and computational methods. As a highly SHG-efficient and phase-matchable material transparent down to 320 nm and thermally stable to 483 K, bis(N-phenylbiguanidium(1+)) sulfate is a promising novel candidate for NLO.

Zobrazit více v PubMed

Träger F., editor. Springer Handbook of Lasers and Optics. Springer; New York, NY, USA: 2007.

Sahraoui B., Czaplicki R., Klöpperpieper A., Andrushchak A.S., Kityk A.V. Ferroelectric AgNa(NO2)2 crystals as novel highly efficient nonlinear optical material: Phase matched second harmonic generation driven by a spontaneous and electric field induced polarizations. J. Appl. Phys. 2010;107:113526. doi: 10.1063/1.3415545. DOI

Derbazi M., Migalska-Zalas A., Goldowski G., Kityk I.V., El Ouazzani H., Ebothé J., Sahraoui B. Picosecond nonlinear optical features of ferroelectric A6M2M8′O30 large sized nanocrystallites. Opt. Mater. 2012;34:1261–1266. doi: 10.1016/j.optmat.2012.01.026. DOI

Iliopoulos K., Kasprowicz D., Majchrowski A., Michalski E., Gindre D., Sahraoui B. Multifunctional Bi2ZnOB2O6 single crystals for second and third order nonlinear optical applications. Appl. Phys. Lett. 2013;103:231103. doi: 10.1063/1.4837055. DOI

Kulyk B., Guichaoua D., Ayadi A., El-Ghayoury A., Sahraoui B. Functionalized azo-based iminopyridine rhenium complexes for nonlinear optical performance. Dye. Pigment. 2017;145:256–262. doi: 10.1016/j.dyepig.2017.06.012. DOI

Bosshard C., Sutter K., Prêtre P., Hulliger J., Flörsheimer M., Kaatz P., Gűnter P. Organic Nonlinear Optical Materials. Gordon and Breach Publisher; Amsterdam, The Netherlands: 1995.

Papadopoulos M.G., Sadlej A.J., Leszczynski J., editors. From Molecules to Condensed Phases. Springer; Dordrecht, The Netherlands: 2006. Non-linear optical properties of matter.

Tiekink E.R.T., Vittal J.J., Zaworotko M.J. Frontiers in Crystal Engineering. A John Wiley and Sons, Ltd., Publication; Hoboken, NJ, USA: 2010. Organic Crystal Engineering.

Zhu W., Zhang X., Hu W. Molecular cocrystal odyssey to unconventional electronics and photonics. Sci. Bull. 2021;66:512–520. doi: 10.1016/j.scib.2020.07.034. PubMed DOI

Bohatý L., Becker P., Haussühl E., Němec I., Lux O., Eichler H.J., Yoneda H., Shirakawa A., Kaminskii A.A. Single crystals of guanidinium zinc sulfate, [C(NH2)3]2Zn(SO4)2–growth, structure, vibrational spectroscopy and stimulated Raman scattering. Z. Für Krist. Cryst. Mater. 2015;230:639–649. doi: 10.1515/zkri-2015-1839. DOI

Kaminskii A.A., Becker P., Rhee H., Lux O., Kaltenbach A., Eichler H.J., Shirakawa A., Yoneda H., Němec I., Fridrichová M., et al. Stimulated Raman scattering in monoclinic non-centrosymmetric guanylurea(1+) hydrogen phosphite (GUHP) Phys. Status Solidi B. 2013;250:1837–1856. doi: 10.1002/pssb.201349201. DOI

Zyss J., Nicoud J.F., Coquillay M. Chirality and hydrogen bonding in molecular crystals for phase-matched second-harmonic generation: N-(4-nitrophenyl)-(L)-prolinol (NPP) J. Chem. Phys. 1984;81:4160–4167. doi: 10.1063/1.448134. DOI

Ravi M., Gangopadhyay P., Rao D.N., Cohen S., Agranat I., Radhakrishnan T.P. Dual influence of H-bonding on the solid-state second-harmonic generation of a chiral quinonoid compound. Chem. Mater. 1998;10:2371–2377. doi: 10.1021/cm9800128. DOI

Desiraju G.R. Crystal engineering. From molecules to materials. J. Mol. Struct. 2003;656:5–15. doi: 10.1016/S0022-2860(03)00354-5. DOI

Aakeröy C.B., Seddon K.R. The hydrogen bond and crystal engineering. Chem. Soc. Rev. 1993;22:397–407. doi: 10.1039/CS9932200397. DOI

Subramanian S., Zaworotko M.J. Exploitation of the hydrogen bond: Recent developments in the context of crystal engineering. Coord. Chem. Rev. 1994;137:357–401. doi: 10.1016/0010-8545(94)03008-E. DOI

Dos Santos L.H.R., Macchi P. The Role of Hydrogen Bond in Designing Molecular Optical Materials. Crystals. 2016;6:43. doi: 10.3390/cryst6040043. DOI

Aakeröy C.B., Hitchcock P.B., Moyle B.D., Seddon K.R. A novel class of salts for second harmonic generation. J. Chem. Soc. Chem. Commun. 1989;23:1856–1859. doi: 10.1039/C39890001856. DOI

Matulková I., Cihelka J., Pojarová M., Fejfarová K., Dušek M., Císařová I., Vaněk P., Kroupa J., Němec P., Tesařová N., et al. Molecular Crystals of 2-amino-1,3,4-thiadiazole with Inorganic Oxyacids–Crystal Engineering, Phase Transformations and NLO Properties. CrystEngComm. 2014;16:1763–1776. doi: 10.1039/c3ce42306a. DOI

Matulková I., Cihelka J., Pojarová M., Fejfarová K., Dušek M., Vaněk P., Kroupa J., Krupková R., Fábry J., Němec I. A new series of 3,5-diamino-1,2,4-triazolium(1+) inorganic salts and their potential in crystal engineering of novel NLO materials. CrystEngComm. 2012;14:4625–4636. doi: 10.1039/c2ce00024e. DOI

Fridrichová M., Němec I., Císařová I., Němec P. Guanylurea(1+) hydrogen phosphite: A novel promising phase-matchable material for second harmonic generation. CrystEngComm. 2010;12:2054–2056. doi: 10.1039/b924973g. DOI

Kloda M., Matulková I., Císařová I., Becker P., Bohatý L., Němec P., Gyepes R., Němec I. Cocrystals of 2-Aminopyrimidine with Boric Acid—Crystal Engineering of a Novel Nonlinear Optically (NLO) Active Crystal. Crystals. 2019;9:403. doi: 10.3390/cryst9080403. DOI

Matulková I., Cihelka J., Fejfarová K., Dušek M., Pojarová M., Vaněk P., Kroupa J., Šála M., Krupková R., Němec I. Semi-organic salts of aniline with inorganic acids: Prospective materials for second harmonic generation. CrystEngComm. 2011;13:4131–4138. doi: 10.1039/c1ce05170a. DOI

Matulková I., Němec I., Císařová I., Němec P., Mička Z. Inorganic salts of biguanide–Searching for new materials for second harmonic generation. J. Mol. Struct. 2008;886:103–120. doi: 10.1016/j.molstruc.2007.11.015. DOI

Matulková I., Solařová H., Štěpnička P., Císařová I., Janda P., Němec P., Němec I. (2-azoniaethyl)guanidinium dichloride—A promising phase-matchable NLO material employing a simple hydrogen bond acceptor in its structure. Opt. Mater. 2015;42:39–46. doi: 10.1016/j.optmat.2014.11.053. DOI

Kathuria D., Bankar A.A., Bharatam P.V. “What’s in a structure?” The story of biguanides. J. Mol. Struct. 2018;1152:61–78. doi: 10.1016/j.molstruc.2017.08.100. DOI

Portalone G., Colapietro M. The 1:1 cocrystals of the proton-transfer compound dilituric acid-phenylbiguanide monohydrate. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2007;63:O181–O184. doi: 10.1107/S0108270107005483. PubMed DOI

Şerb M.-D., Kalf I., Englert U. Biguanide and squaric acid as pH-dependent building blocks in crystal engineering. CrystEngComm. 2014;16:10631–10639. doi: 10.1039/C4CE01643B. DOI

Matulková I., Němec I., Císařová I., Němec P., Vaněk P. Organic salts of biguanide-An attempt to crystal engineering of novel materials for second harmonic generation. J. Mol. Struct. 2010;966:23–32. doi: 10.1016/j.molstruc.2009.11.061. DOI

Matulková I., Císařová I., Vaněk P., Němec P., Němec I. Novel organic NLO material bis(N-phenylbiguanidium(1+)) oxalate—A combined X-ray diffraction, DSC and vibrational spectroscopic study of its unique polymorphism. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017;170:256–266. doi: 10.1016/j.saa.2016.07.023. PubMed DOI

Matulková I. Ph.D. Thesis. Charles University; Prague, Czech Republic: 2007. Syntéza a Studium Elektronově Bohatých Dusíkatých Sloučenin s Anorganickými a Organickými Kyselinami–nové Materiály pro Nelineární Optiku.

Matulková I., Císařová I., Němec I. 2-Phenylbiguanidinium hydrogen succinate methanol monosolvate. Acta Crystallogr. Sect. E Struct. Rep. Online. 2010;66:o3187–o3188. doi: 10.1107/S160053681004585X. PubMed DOI PMC

Matulková I., Císařová I., Němec I. Bis(2-phenylbiguanidium) adipate tetrahydrate. Acta Crystallogr. Sect. E Struct. Rep. Online. 2011;67:o118–o119. doi: 10.1107/S1600536810049925. PubMed DOI PMC

Portalone G., Colapietro M. Redetermination of phenylbiguanide hydrochloride. Acta Crystallogr. Sect. E Struct. Rep. Online. 2004;60:O1165–O1166. doi: 10.1107/S1600536804013807. DOI

Spek A.L. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2009;65:148–155. doi: 10.1107/S090744490804362X. PubMed DOI PMC

Erran E., Trifino F., Vaccari A., Richter M., Del Piero G. Structure and reactivity of Zn- Cr mixed oxides Role of non-stoichiometry in the catalytic synthesis of methanol. Catal. Lett. 1989;3:65–72. doi: 10.1007/BF00765056. DOI

Bernstein J., Davis R.E., Shimoni L., Chang N.-L. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals. Angew. Chem. Int. Ed. Engl. 1995;34:1555–1573. doi: 10.1002/anie.199515551. DOI

Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A: Theory and Applications in Inorganic Chemistry. 6th ed. Wiley; Hoboken, NJ, USA: 2009.

Wojnarska J., Gryl M., Seidler T., Rydz A., Oszajca M., Stadnicka K.M., Marzec M., Matulková I., Němec I., Němec P. Crystal Structure and (Non)linear Optical Properties of a Cyanuric Acid Isoniazid <1/1> Co-crystal: Shortcomings of Phase Matching Determination from Powdered Samples. Cryst. Growth Des. 2019;19:6831–6836. doi: 10.1021/acs.cgd.9b01023. DOI

Němec I., Matulková I., Krumbe W., Andersen L., Císařová I., Kroupa J., Němec P., Bohatý L., Becker P. Linear and nonlinear optical properties, pyroelectricity and vibrational spectroscopy of polar guanidinium hydrogen phosphite, GuH2PO3, and hydrogen selenite, GuHSeO3. Opt. Mater. 2021;111:110722. doi: 10.1016/j.optmat.2020.110722. DOI

Maker P.D., Terhune R.W., Nisenoff M., Savage C.M. Effects of dispersion and focusing on the production of optical harmonics. Phys. Rev. Lett. 1962;8:21–23. doi: 10.1103/PhysRevLett.8.21. DOI

Nye J.F. Physical Properties of Crystals. Oxford University Press; London, UK: 1957.

Charra F., Gurzadyan G.G. Landolt-Börstein Group III: Condensed Matter Vol. 30 B Nonlinear Dielectric Susceptibilities. Springer; Berlin/Heidelberg, Germany: 2000.

Hooft R.W.W. Collect. Nonius BV; Delft, The Netherlands: 1998.

Otwinowski Z., Minor W. Methods in Enzymology. Volume 276 Academic Press; New York, NY, USA: 1997. PubMed

Janczak J. CrysAlisCCD. Oxford Diffraction Ltd.; Abingdon, UK: 2006.

Bruker J. SAINT V8.40B. Bruker AXS Inc.; Madison, WI, USA: 2012.

Altomare A., Cascarano G., Giacovazzo C., Guagliardi A., Burla M.C., Polidori G., Camalli M. SIR92—A program for automatic solution of crystal structures by direct methods. J. Appl. Crystallogr. 1994;27:435. doi: 10.1107/S002188989400021X. DOI

Sheldrick G.M. The SHELXL Homepage. [(accessed on 5 April 2021)]; Available online: http://shelx.uni-goettingen.de/index.php.

Sheldrick G.M. SHELXT– Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Crystallogr. 2015;71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC

Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC

Parsons S., Flack H.D., Wagner T. Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2013;B69:249–259. doi: 10.1107/S2052519213010014. PubMed DOI PMC

Rodrigues-Carvajal J., Roisnel T. FullProf. 98 and WinPLOTR: New Windows 95/NT Applications for Diffraction; Newsletter of the IUCr Commission for Powder Diffraction. [(accessed on 5 April 2021)];1998 Available online: https://www.iucr.org/__data/assets/pdf_file/0017/21635/cpd20.pdf.

Kurtz S.K., Perry T.T. A Powder Technique for the Evaluation of Nonlinear Optical Materials. J. Appl. Phys. 1968;39:3798–3814. doi: 10.1063/1.1656857. DOI

Dovesi R., Erba A., Orlando R., Zicovich-Wilson C.M., Civalleri B., Maschio L., Rérat M., Casassa S., Baima J., Salustro S., et al. Quantum-mechanical condensed matter simulations with CRYSTAL. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018;8:e1360. doi: 10.1002/wcms.1360. DOI

Ferrero M., Rérat M., Orlando R., Dovesi R. Coupled perturbed Hartree-Fock for periodic systems: The role of symmetry and related computational aspects. J. Chem. Phys. 2008;128:014110. doi: 10.1063/1.2817596. PubMed DOI

Ferrero M., Rérat M., Orlando R., Dovesi R. The calculation of static polarizabilities of 1-3D periodic compounds. the implementation in the crystal code. J. Comput. Chem. 2008;29:1450–1459. doi: 10.1002/jcc.20905. PubMed DOI

Peintinger M.F., Oliveira D.V., Bredow T. Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations. J. Comput. Chem. 2013;35:451–459. doi: 10.1002/jcc.23153. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...