Inorganic Salts of N-phenylbiguanidium(1+)-Novel Family with Promising Representatives for Nonlinear Optics
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000417
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34445122
PubMed Central
PMC8395133
DOI
10.3390/ijms22168419
PII: ijms22168419
Knihovny.cz E-zdroje
- Klíčová slova
- N-phenylbiguanidium(1+) cation, crystal structure, second harmonic generation, solid-state DFT, vibrational spectra,
- MeSH
- difrakce rentgenového záření metody MeSH
- krystalizace metody MeSH
- krystalografie rentgenová metody MeSH
- optika a fotonika metody MeSH
- Ramanova spektroskopie metody MeSH
- soli chemie MeSH
- spektroskopie infračervená s Fourierovou transformací metody MeSH
- termogravimetrie metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- soli MeSH
Seven inorganic salts containing N-phenylbiguanide as a prospective organic molecular carrier of nonlinear optical properties were prepared and studied within our research of novel hydrogen-bonded materials for nonlinear optics (NLO). All seven salts, namely N-phenylbiguanidium(1+) nitrate (C2/c), N-phenylbiguanidium(1+) perchlorate (P-1), N-phenylbiguanidium(1+) hydrogen carbonate (P21/c), bis(N-phenylbiguanidium(1+)) sulfate (C2), bis(N-phenylbiguanidium(1+)) hydrogen phosphate sesquihydrate (P-1), bis(N-phenylbiguanidium(1+)) phosphite (P21), and bis(N-phenylbiguanidium(1+)) phosphite dihydrate (P21/n), were characterised by X-ray diffraction (powder and single-crystal X-ray diffraction) and by vibrational spectroscopy (FTIR and Raman). Two salts with non-centrosymmetric crystal structures-bis(N-phenylbiguanidium(1+)) sulfate and bis(N-phenylbiguanidium(1+)) phosphite-were further studied to examine their linear and nonlinear optical properties using experimental and computational methods. As a highly SHG-efficient and phase-matchable material transparent down to 320 nm and thermally stable to 483 K, bis(N-phenylbiguanidium(1+)) sulfate is a promising novel candidate for NLO.
Zobrazit více v PubMed
Träger F., editor. Springer Handbook of Lasers and Optics. Springer; New York, NY, USA: 2007.
Sahraoui B., Czaplicki R., Klöpperpieper A., Andrushchak A.S., Kityk A.V. Ferroelectric AgNa(NO2)2 crystals as novel highly efficient nonlinear optical material: Phase matched second harmonic generation driven by a spontaneous and electric field induced polarizations. J. Appl. Phys. 2010;107:113526. doi: 10.1063/1.3415545. DOI
Derbazi M., Migalska-Zalas A., Goldowski G., Kityk I.V., El Ouazzani H., Ebothé J., Sahraoui B. Picosecond nonlinear optical features of ferroelectric A6M2M8′O30 large sized nanocrystallites. Opt. Mater. 2012;34:1261–1266. doi: 10.1016/j.optmat.2012.01.026. DOI
Iliopoulos K., Kasprowicz D., Majchrowski A., Michalski E., Gindre D., Sahraoui B. Multifunctional Bi2ZnOB2O6 single crystals for second and third order nonlinear optical applications. Appl. Phys. Lett. 2013;103:231103. doi: 10.1063/1.4837055. DOI
Kulyk B., Guichaoua D., Ayadi A., El-Ghayoury A., Sahraoui B. Functionalized azo-based iminopyridine rhenium complexes for nonlinear optical performance. Dye. Pigment. 2017;145:256–262. doi: 10.1016/j.dyepig.2017.06.012. DOI
Bosshard C., Sutter K., Prêtre P., Hulliger J., Flörsheimer M., Kaatz P., Gűnter P. Organic Nonlinear Optical Materials. Gordon and Breach Publisher; Amsterdam, The Netherlands: 1995.
Papadopoulos M.G., Sadlej A.J., Leszczynski J., editors. From Molecules to Condensed Phases. Springer; Dordrecht, The Netherlands: 2006. Non-linear optical properties of matter.
Tiekink E.R.T., Vittal J.J., Zaworotko M.J. Frontiers in Crystal Engineering. A John Wiley and Sons, Ltd., Publication; Hoboken, NJ, USA: 2010. Organic Crystal Engineering.
Zhu W., Zhang X., Hu W. Molecular cocrystal odyssey to unconventional electronics and photonics. Sci. Bull. 2021;66:512–520. doi: 10.1016/j.scib.2020.07.034. PubMed DOI
Bohatý L., Becker P., Haussühl E., Němec I., Lux O., Eichler H.J., Yoneda H., Shirakawa A., Kaminskii A.A. Single crystals of guanidinium zinc sulfate, [C(NH2)3]2Zn(SO4)2–growth, structure, vibrational spectroscopy and stimulated Raman scattering. Z. Für Krist. Cryst. Mater. 2015;230:639–649. doi: 10.1515/zkri-2015-1839. DOI
Kaminskii A.A., Becker P., Rhee H., Lux O., Kaltenbach A., Eichler H.J., Shirakawa A., Yoneda H., Němec I., Fridrichová M., et al. Stimulated Raman scattering in monoclinic non-centrosymmetric guanylurea(1+) hydrogen phosphite (GUHP) Phys. Status Solidi B. 2013;250:1837–1856. doi: 10.1002/pssb.201349201. DOI
Zyss J., Nicoud J.F., Coquillay M. Chirality and hydrogen bonding in molecular crystals for phase-matched second-harmonic generation: N-(4-nitrophenyl)-(L)-prolinol (NPP) J. Chem. Phys. 1984;81:4160–4167. doi: 10.1063/1.448134. DOI
Ravi M., Gangopadhyay P., Rao D.N., Cohen S., Agranat I., Radhakrishnan T.P. Dual influence of H-bonding on the solid-state second-harmonic generation of a chiral quinonoid compound. Chem. Mater. 1998;10:2371–2377. doi: 10.1021/cm9800128. DOI
Desiraju G.R. Crystal engineering. From molecules to materials. J. Mol. Struct. 2003;656:5–15. doi: 10.1016/S0022-2860(03)00354-5. DOI
Aakeröy C.B., Seddon K.R. The hydrogen bond and crystal engineering. Chem. Soc. Rev. 1993;22:397–407. doi: 10.1039/CS9932200397. DOI
Subramanian S., Zaworotko M.J. Exploitation of the hydrogen bond: Recent developments in the context of crystal engineering. Coord. Chem. Rev. 1994;137:357–401. doi: 10.1016/0010-8545(94)03008-E. DOI
Dos Santos L.H.R., Macchi P. The Role of Hydrogen Bond in Designing Molecular Optical Materials. Crystals. 2016;6:43. doi: 10.3390/cryst6040043. DOI
Aakeröy C.B., Hitchcock P.B., Moyle B.D., Seddon K.R. A novel class of salts for second harmonic generation. J. Chem. Soc. Chem. Commun. 1989;23:1856–1859. doi: 10.1039/C39890001856. DOI
Matulková I., Cihelka J., Pojarová M., Fejfarová K., Dušek M., Císařová I., Vaněk P., Kroupa J., Němec P., Tesařová N., et al. Molecular Crystals of 2-amino-1,3,4-thiadiazole with Inorganic Oxyacids–Crystal Engineering, Phase Transformations and NLO Properties. CrystEngComm. 2014;16:1763–1776. doi: 10.1039/c3ce42306a. DOI
Matulková I., Cihelka J., Pojarová M., Fejfarová K., Dušek M., Vaněk P., Kroupa J., Krupková R., Fábry J., Němec I. A new series of 3,5-diamino-1,2,4-triazolium(1+) inorganic salts and their potential in crystal engineering of novel NLO materials. CrystEngComm. 2012;14:4625–4636. doi: 10.1039/c2ce00024e. DOI
Fridrichová M., Němec I., Císařová I., Němec P. Guanylurea(1+) hydrogen phosphite: A novel promising phase-matchable material for second harmonic generation. CrystEngComm. 2010;12:2054–2056. doi: 10.1039/b924973g. DOI
Kloda M., Matulková I., Císařová I., Becker P., Bohatý L., Němec P., Gyepes R., Němec I. Cocrystals of 2-Aminopyrimidine with Boric Acid—Crystal Engineering of a Novel Nonlinear Optically (NLO) Active Crystal. Crystals. 2019;9:403. doi: 10.3390/cryst9080403. DOI
Matulková I., Cihelka J., Fejfarová K., Dušek M., Pojarová M., Vaněk P., Kroupa J., Šála M., Krupková R., Němec I. Semi-organic salts of aniline with inorganic acids: Prospective materials for second harmonic generation. CrystEngComm. 2011;13:4131–4138. doi: 10.1039/c1ce05170a. DOI
Matulková I., Němec I., Císařová I., Němec P., Mička Z. Inorganic salts of biguanide–Searching for new materials for second harmonic generation. J. Mol. Struct. 2008;886:103–120. doi: 10.1016/j.molstruc.2007.11.015. DOI
Matulková I., Solařová H., Štěpnička P., Císařová I., Janda P., Němec P., Němec I. (2-azoniaethyl)guanidinium dichloride—A promising phase-matchable NLO material employing a simple hydrogen bond acceptor in its structure. Opt. Mater. 2015;42:39–46. doi: 10.1016/j.optmat.2014.11.053. DOI
Kathuria D., Bankar A.A., Bharatam P.V. “What’s in a structure?” The story of biguanides. J. Mol. Struct. 2018;1152:61–78. doi: 10.1016/j.molstruc.2017.08.100. DOI
Portalone G., Colapietro M. The 1:1 cocrystals of the proton-transfer compound dilituric acid-phenylbiguanide monohydrate. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2007;63:O181–O184. doi: 10.1107/S0108270107005483. PubMed DOI
Şerb M.-D., Kalf I., Englert U. Biguanide and squaric acid as pH-dependent building blocks in crystal engineering. CrystEngComm. 2014;16:10631–10639. doi: 10.1039/C4CE01643B. DOI
Matulková I., Němec I., Císařová I., Němec P., Vaněk P. Organic salts of biguanide-An attempt to crystal engineering of novel materials for second harmonic generation. J. Mol. Struct. 2010;966:23–32. doi: 10.1016/j.molstruc.2009.11.061. DOI
Matulková I., Císařová I., Vaněk P., Němec P., Němec I. Novel organic NLO material bis(N-phenylbiguanidium(1+)) oxalate—A combined X-ray diffraction, DSC and vibrational spectroscopic study of its unique polymorphism. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017;170:256–266. doi: 10.1016/j.saa.2016.07.023. PubMed DOI
Matulková I. Ph.D. Thesis. Charles University; Prague, Czech Republic: 2007. Syntéza a Studium Elektronově Bohatých Dusíkatých Sloučenin s Anorganickými a Organickými Kyselinami–nové Materiály pro Nelineární Optiku.
Matulková I., Císařová I., Němec I. 2-Phenylbiguanidinium hydrogen succinate methanol monosolvate. Acta Crystallogr. Sect. E Struct. Rep. Online. 2010;66:o3187–o3188. doi: 10.1107/S160053681004585X. PubMed DOI PMC
Matulková I., Císařová I., Němec I. Bis(2-phenylbiguanidium) adipate tetrahydrate. Acta Crystallogr. Sect. E Struct. Rep. Online. 2011;67:o118–o119. doi: 10.1107/S1600536810049925. PubMed DOI PMC
Portalone G., Colapietro M. Redetermination of phenylbiguanide hydrochloride. Acta Crystallogr. Sect. E Struct. Rep. Online. 2004;60:O1165–O1166. doi: 10.1107/S1600536804013807. DOI
Spek A.L. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2009;65:148–155. doi: 10.1107/S090744490804362X. PubMed DOI PMC
Erran E., Trifino F., Vaccari A., Richter M., Del Piero G. Structure and reactivity of Zn- Cr mixed oxides Role of non-stoichiometry in the catalytic synthesis of methanol. Catal. Lett. 1989;3:65–72. doi: 10.1007/BF00765056. DOI
Bernstein J., Davis R.E., Shimoni L., Chang N.-L. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals. Angew. Chem. Int. Ed. Engl. 1995;34:1555–1573. doi: 10.1002/anie.199515551. DOI
Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A: Theory and Applications in Inorganic Chemistry. 6th ed. Wiley; Hoboken, NJ, USA: 2009.
Wojnarska J., Gryl M., Seidler T., Rydz A., Oszajca M., Stadnicka K.M., Marzec M., Matulková I., Němec I., Němec P. Crystal Structure and (Non)linear Optical Properties of a Cyanuric Acid Isoniazid <1/1> Co-crystal: Shortcomings of Phase Matching Determination from Powdered Samples. Cryst. Growth Des. 2019;19:6831–6836. doi: 10.1021/acs.cgd.9b01023. DOI
Němec I., Matulková I., Krumbe W., Andersen L., Císařová I., Kroupa J., Němec P., Bohatý L., Becker P. Linear and nonlinear optical properties, pyroelectricity and vibrational spectroscopy of polar guanidinium hydrogen phosphite, GuH2PO3, and hydrogen selenite, GuHSeO3. Opt. Mater. 2021;111:110722. doi: 10.1016/j.optmat.2020.110722. DOI
Maker P.D., Terhune R.W., Nisenoff M., Savage C.M. Effects of dispersion and focusing on the production of optical harmonics. Phys. Rev. Lett. 1962;8:21–23. doi: 10.1103/PhysRevLett.8.21. DOI
Nye J.F. Physical Properties of Crystals. Oxford University Press; London, UK: 1957.
Charra F., Gurzadyan G.G. Landolt-Börstein Group III: Condensed Matter Vol. 30 B Nonlinear Dielectric Susceptibilities. Springer; Berlin/Heidelberg, Germany: 2000.
Hooft R.W.W. Collect. Nonius BV; Delft, The Netherlands: 1998.
Otwinowski Z., Minor W. Methods in Enzymology. Volume 276 Academic Press; New York, NY, USA: 1997. PubMed
Janczak J. CrysAlisCCD. Oxford Diffraction Ltd.; Abingdon, UK: 2006.
Bruker J. SAINT V8.40B. Bruker AXS Inc.; Madison, WI, USA: 2012.
Altomare A., Cascarano G., Giacovazzo C., Guagliardi A., Burla M.C., Polidori G., Camalli M. SIR92—A program for automatic solution of crystal structures by direct methods. J. Appl. Crystallogr. 1994;27:435. doi: 10.1107/S002188989400021X. DOI
Sheldrick G.M. The SHELXL Homepage. [(accessed on 5 April 2021)]; Available online: http://shelx.uni-goettingen.de/index.php.
Sheldrick G.M. SHELXT– Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Crystallogr. 2015;71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC
Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Parsons S., Flack H.D., Wagner T. Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2013;B69:249–259. doi: 10.1107/S2052519213010014. PubMed DOI PMC
Rodrigues-Carvajal J., Roisnel T. FullProf. 98 and WinPLOTR: New Windows 95/NT Applications for Diffraction; Newsletter of the IUCr Commission for Powder Diffraction. [(accessed on 5 April 2021)];1998 Available online: https://www.iucr.org/__data/assets/pdf_file/0017/21635/cpd20.pdf.
Kurtz S.K., Perry T.T. A Powder Technique for the Evaluation of Nonlinear Optical Materials. J. Appl. Phys. 1968;39:3798–3814. doi: 10.1063/1.1656857. DOI
Dovesi R., Erba A., Orlando R., Zicovich-Wilson C.M., Civalleri B., Maschio L., Rérat M., Casassa S., Baima J., Salustro S., et al. Quantum-mechanical condensed matter simulations with CRYSTAL. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018;8:e1360. doi: 10.1002/wcms.1360. DOI
Ferrero M., Rérat M., Orlando R., Dovesi R. Coupled perturbed Hartree-Fock for periodic systems: The role of symmetry and related computational aspects. J. Chem. Phys. 2008;128:014110. doi: 10.1063/1.2817596. PubMed DOI
Ferrero M., Rérat M., Orlando R., Dovesi R. The calculation of static polarizabilities of 1-3D periodic compounds. the implementation in the crystal code. J. Comput. Chem. 2008;29:1450–1459. doi: 10.1002/jcc.20905. PubMed DOI
Peintinger M.F., Oliveira D.V., Bredow T. Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations. J. Comput. Chem. 2013;35:451–459. doi: 10.1002/jcc.23153. PubMed DOI