Mutagenic strategies against luxS gene affect the early stage of biofilm formation of Campylobacter jejuni

. 2022 Feb ; 63 (1) : 145-157. [epub] 20210827

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34448102
Odkazy

PubMed 34448102
DOI 10.1007/s13353-021-00655-y
PII: 10.1007/s13353-021-00655-y
Knihovny.cz E-zdroje

Currently, it is clear that the luxS gene has an impact on the process of biofilm formation in Campylobacter jejuni. However, even within the species, naturally occurring strains of Campylobacter lacking the luxS gene exist, which can form biofilms. In order to better understand the genetic determinants and the role of quorum sensing through the LuxS/AI-2 pathway in biofilm formation, a set of mutant/complemented strains of C. jejuni 81-176 were prepared. Additionally, the impact of the mutagenic strategy used against the luxS gene was investigated. Biofilm formation was affected by both the presence and absence of the luxS gene, and by the mutagenic strategy used. Analysis by CLSM showed that all mutant strains formed significantly less biofilm mass when compared to the wild-type. Interestingly, the deletion mutant (∆luxS) showed a larger decrease in biofilm mass than the substitution (∙luxS) and insertional inactivated ([Formula: see text]luxS) mutants, even though all the mutant strains lost the ability to produce autoinducer-2 molecules. Moreover, the biofilm of the ∆luxS mutant lacked the characteristic microcolonies observed in all other strains. The complementation of all mutant strains resulted in restored ability to produce AI-2, to form a complex biofilm, and to develop microcolonies at the level of the wild-type.

Zobrazit více v PubMed

Adler L, Alter T, Sharbati S, Golz G (2014) Phenotypes of Campylobacter jejuni luxS mutants are depending on strain background, kind of mutation and experimental conditions. PLoS ONE 9:e104399. https://doi.org/10.1371/journal.pone.0104399 PubMed DOI PMC

Adler L, Alter T, Sharbati S, Golz G (2015) The signalling molecule autoinducer-2 is not internalised in Campylobacter jejuni. Berl Munch Tierarztl Wochenschr 128:111–116 PubMed

Askoura M, Sarvan S, Couture JF, Stintzi A (2016) The Campylobacter jejuni ferric uptake regulator promotes acid survival and cross-protection against oxidative stress. Infect Immun 84:1287–1300 DOI

Auger S, Krin E, Aymerich S, Gohar M (2006) Autoinducer 2 affects biofilm formation by Bacillus cereus. Appl Environ Microbiol 72(1):937–941 DOI

Bae J, Oh E, Jeon B (2014) Enhanced transmission of antibiotic resistance in Campylobacter jejuni biofilms by natural transformation. Antimicrobial Agents Chemotherapy 58:7573–7575. https://doi.org/10.1128/AAC.04066-14 PubMed DOI PMC

Balestrino D, Haagensen JA, Rich C, Forestier C (2005) Characterization of type 2 quorum sensing in Klebsiella pneumoniae and relationship with biofilm formation. J Bacteriol 187:2870–2880. https://doi.org/10.1128/JB.187.8.2870-2880.2005 PubMed DOI PMC

Bassler BL (2002) Small talk. Cell-to-Cell Communication in Bacteria Cell 109:421–424 PubMed

Bodor AM, Jansch L, Wissing J, Wagner-Dobler I (2011) The luxS mutation causes loosely-bound biofilms in Shewanella oneidensis. BMC Res Notes 4:180. https://doi.org/10.1186/1756-0500-4-180 PubMed DOI PMC

Bolton DJ (2015) Campylobacter virulence and survival factors. Food Microbiol 48:99–108 DOI

Bronowski C, James CE, Winstanley C (2014) Role of environmental survival in transmission of Campylobacter jejuni. FEMS Microbiol Lett 356:8–19. https://doi.org/10.1111/1574-6968.12488 PubMed DOI

Brown HL, Reuter M, Hanman K, Betts RP, van Vliet AH (2015) Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni. PLoS ONE 10:e0121680. https://doi.org/10.1371/journal.pone.0121680 PubMed DOI PMC

EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control) (2019) The European Union one health 2018 zoonoses report. EFSA J 2019;17(12):5926, 276 pp

Elvers KT, Park SF (2002) Quorum sensing in Campylobacter jejuni: detection of a luxS encoded signalling molecule. Microbiology 148:1475–1481. https://doi.org/10.1099/00221287-148-5-1475 PubMed DOI

Emerenini BO, Hense BA, Kuttler C, Eberl HJ (2015) A mathematical model of quorum sensing induced biofilm detachment. PLoS ONE 10:e0132385. https://doi.org/10.1371/journal.pone.0132385 PubMed DOI PMC

Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415(6871):545–549 DOI

Gambino M, Cappitelli F (2016) Mini-review: Biofilm responses to oxidative stress. Biofouling 32:167–178. https://doi.org/10.1080/08927014.2015.1134515 PubMed DOI

Golz G, Adler L, Huehn S, Alter T (2012) LuxS distribution and AI-2 activity of Campylobacter spp. J Appl Microbiol 112(3):571–578 DOI

He F (2011) E Coli Genomic DNA Extraction. Bio-Protocol 1:e97. https://doi.org/10.21769/BioProtoc.97 DOI

He Y, Frye JG, Strobaugh TP, Chen CY (2008) Analysis of AI-2/LuxS-dependent transcription in Campylobacter jejuni strain 81–176. Foodborne Pathogens Disease 5:399–415. https://doi.org/10.1089/fpd.2008.0106 PubMed DOI

He Z, Liang J, Zhou W, Xie Q, Tang Z, Ma R, Huang Z (2016) Effect of the quorum-sensing luxS gene on biofilm formation by Enterococcus faecalis. Eur J Oral Sci 124(3):234–240 DOI

Indikova I, Humphrey TJ, Hilbert F (2015) Survival with a helping hand: Campylobacter and microbiota. Front Microbiol 6:1266. https://doi.org/10.3389/fmicb.2015.01266 PubMed DOI PMC

Juers DH, Matthews BW, Huber RE (2012) LacZ β-galactosidase: structure and function of an enzyme of historical and molecular biological importance. Protein Sci 21(12):1792–1807 DOI

Kalendar R, Khassenov B, Ramankulov Y, Samuilova O, Ivanov KI (2017) FastPCR: An in silico tool for fast primer and probe design and advanced sequence analysis. Genomics 109:312–319. https://doi.org/10.1016/j.ygeno.2017.05.005 PubMed DOI

Kreuder AJ, Ruddell B, Mou K, Hassall A, Zhang Q, Plummer PJ (2020) Small noncoding RNA CjNC110 influences motility, autoagglutination, AI-2 localization, hydrogen peroxide sensitivity, and chicken colonization in Campylobacter jejuni. Infect Immun 88(7):e00245-e220 DOI

Li Y-H, Tian X (2012) Quorum sensing and bacterial social interactions in biofilms. Sensors (basel, Switzerland) 12:2519–2538. https://doi.org/10.3390/s120302519 DOI

Ligowska M, Cohn MT, Stabler RA, Wren BW, Brondsted L (2011) Effect of chicken meat environment on gene expression of Campylobacter jejuni and its relevance to survival in food. Int J Food Microbiol 145(Suppl 1):S111-115. https://doi.org/10.1016/j.ijfoodmicro.2010.08.027 PubMed DOI

Miles AA, Misra SS, Irwin JO (1938) The estimation of the bactericidal power of the blood. Journal of Hygiene (lond) 38:732–749

Miller ST, Xavier KB, Campagna SR, Taga ME, Semmelhack MF, Bassler BL, Hughson FM (2004) Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol Cell 15:677–687. https://doi.org/10.1016/j.molcel.2004.07.020 PubMed DOI

Pascoe B, Meric G, Murray S, Yahara K, Mageiros L, Bowen R, Jones NH, Jeeves RE, Lappin-Scott HM, Asakura H, Sheppard SK (2015) Enhanced biofilm formation and multi-host transmission evolve from divergent genetic backgrounds in Campylobacter jejuni. Environ Microbiol 17(11):4779–4789 DOI

Plummer P, Sahin O, Burrough E, Sippy R, Mou K, Rabenold J, Yaeger M, Zhang Q (2012) Critical role of LuxS in the virulence of Campylobacter jejuni in a guinea pig model of abortion. Infect Immun 80:585–593. https://doi.org/10.1128/IAI.05766-11 PubMed DOI PMC

Plummer P, Zhu J, Akiba M, Pei D, Zhang Q (2011) Identification of a key amino acid of LuxS involved in AI-2 production in Campylobacter jejuni. PLoS ONE 6:e15876. https://doi.org/10.1371/journal.pone.0015876 PubMed DOI PMC

Plummer PJ (2012) LuxS and quorum-sensing in Campylobacter. Front Cell Infect Microbiol 2:22. https://doi.org/10.3389/fcimb.2012.00022 PubMed DOI PMC

Reeser RJ, Medler RT, Billington SJ, Jost BH, Joens LA (2007) Characterization of Campylobacter jejuni biofilms under defined growth conditions. Appl Environ Microbiol 73:1908–1913. https://doi.org/10.1128/AEM.00740-06 PubMed DOI PMC

Reuter M, Mallett A, Pearson BM, van Vliet AH (2010) Biofilm formation by Campylobacter jejuni is increased under aerobic conditions. Appl Environ Microbiol 76:2122–2128. https://doi.org/10.1128/AEM.01878-09 PubMed DOI PMC

Rickard AH, Colacino KR, Manton KM, Morton RI, Pulcini E, Pfeil J, Rhoads D, Wolcott RD, James G (2010) Production of cell-cell signaling molecules by bacteria isolated from human chronic wounds. J Appl Microbiol 108(5):1509–1522 DOI

Rickard AH, Palmer RJ, Blehert DS, Campagna SR, Semmelhack MF, Egland PG, Bassler BL, Kolenbrander PE (2006) Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol Microbiol 60(6):1446–1456 DOI

Sambrook J, Russell DW (2006) Preparation and transformation of competent E. coli using calcium chloride. Cold Spring Harbor Protocols 2006:pdb.prot3932 doi: https://doi.org/10.1101/pdb.prot3932

Shagieva E, Teren M, Michova H, Strakova N, Karpiskova R, Demnerova K (2020) Adhesion, biofilm formation, and luxS sequencing of Campylobacter jejuni isolated from water in the Czech Republic. Frontiers in Cellular and Infection Microbiology 10(707)

Shang Y, Ren F, Song Z, Li Q, Zhou X, Wang X, Xu Z, Bao G, Wan T, Lei T, Wang N, Jiao X, Huang J (2016) Insights into Campylobacter jejuni colonization and enteritis using a novel infant rabbit model. Sci Rep 6:28737. https://doi.org/10.1038/srep28737 PubMed DOI PMC

Turonova H, Briandet R, Rodrigues R, Hernould M, Hayek N, Stintzi A, Pazlarova J, Tresse O (2015) Biofilm spatial organization by the emerging pathogen Campylobacter jejuni: comparison between NCTC 11168 and 81–176 strains under microaerobic and oxygen-enriched conditions. Front Microbiol 6:709. https://doi.org/10.3389/fmicb.2015.00709 PubMed DOI PMC

Turonova H, Neu TR, Ulbrich P, Pazlarova J, Tresse O (2016) The biofilm matrix of Campylobacter jejuni determined by fluorescence lectin-binding analysis. Biofouling 32:597–608. https://doi.org/10.1080/08927014.2016.1169402 PubMed DOI

Varsaki A, Murphy C, Barczynska A, Jordan K, Carroll C (2015) The acid adaptive tolerance response in Campylobacter jejuni induces a global response, as suggested by proteomics and microarrays. Microb Biotechnol 8:974–988. https://doi.org/10.1111/1751-7915.12302 PubMed DOI PMC

Vondrakova L, Purkrtova S, Pazlarova J (2015) Demnerova K (2015) Species differentiation of thermotolerant Campylobacters based on distinctive banding patterns obtained by multiplex PCR. Czech Journal of Food Sciences 33:27–31 DOI

Wassenaar TM, Fry BN, van der Zeijst BA (1993) Genetic manipulation of Campylobacter: evaluation of natural transformation and electro-transformation. Gene 132:131–135 DOI

Xavier KB, Bassler BL (2003) LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6:191–197. https://doi.org/10.1016/s1369-5274(03)00028-6 PubMed DOI

Yao R, Alm RA, Trust TJ, Guerry P (1993) Construction of new Campylobacter cloning vectors and a new mutational cat cassette. Gene 130:127–130 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...