Opportunistic DF-AF Selection Relaying in Hybrid Wireless and Power Line Communication for Indoor IoT Networks

. 2021 Aug 13 ; 21 (16) : . [epub] 20210813

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34450912

Grantová podpora
LM2018140 e-Infrastructure CZ

This manuscript investigates the system performance of hybrid wireless and power line communication networks for indoor Internet of Things applications. Differentiating itself from the existing literature, the performance of the direct link and dual-hop energy harvesting relay-aided links is analyzed under the condition of indoor fading modeled by log-normal distribution. Moreover, the manuscript presents the analytical expressions of the successful transmission probability of the deployed opportunistic decode-and-forward and amplify-and-forward relay selection scheme, and validates them with Monte Carlo simulations. Moreover, the impact of different system parameters on the successful transmission probability is revealed. For the considered hybrid system, in general, the opportunistic decode-and-forward relaying scheme outperforms the opportunistic amplify-and-forward relaying scheme. As importantly, increasing the source to relay distance and power splitting ratio over certain limits significantly deteriorates the system performance, indicated by the decrease in the successful transmission probability.

Zobrazit více v PubMed

Andrews J.G., Buzzi S., Choi W., Hanly S.V., Lozano A., Soong A.C.K., Zhang J.C. What will 5G be? IEEE J. Sel. Areas Commun. 2014;32:1065–1082. doi: 10.1109/JSAC.2014.2328098. DOI

Osseiran A., Boccardi F., Braun V., Kusume K., Marsch P., Maternia M., Queseth O., Schellmann M., Schotten H., Taoka H., et al. Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Commun. Mag. 2014;52:26–35. doi: 10.1109/MCOM.2014.6815890. DOI

Agiwal M., Roy A., Saxena N. Next generation 5G wireless networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2016;18:1617–1655. doi: 10.1109/COMST.2016.2532458. DOI

Palattella M.R., Dohler M., Grieco A., Rizzo G., Torsner J., Engel T., Ladid L. Internet of Things in the 5G era: Enablers architecture and business models. IEEE J. Sel. Areas Commun. 2016;34:510–527. doi: 10.1109/JSAC.2016.2525418. DOI

Lin J., Yu W., Zhang N., Yang X., Zhang H., Zhao W. A survey on Internet of Things: Architecture enabling technologies security privacy and applications. IEEE Internet Things J. 2017;4:1125–1142. doi: 10.1109/JIOT.2017.2683200. DOI

Nguyen H.-S., Voznak M., Nguyen M.-T., Sevcik L. Performance Analysis with Wireless Power Transfer Constraint Policies in Full-Duplex Relaying Networks. Elektronika ir Elektrotechnika. 2017;23:70–76. doi: 10.5755/j01.eie.23.4.18725. DOI

Lu X., Wang P., Niyato D., Kim D.I., Han Z. Wireless networks with RF energy harvesting: A contemporary survey. IEEE Commun. Surv. Tutor. 2015;17:757–789. doi: 10.1109/COMST.2014.2368999. DOI

Huang K., Zhou X. Cutting the last wires for mobile communications by microwave power transfer. IEEE Commun. Mag. 2015;53:86–93. doi: 10.1109/MCOM.2015.7120022. DOI

Ponnimbaduge Perera T.D., Jayakody D.N.K., Sharma S.K., Chatzinotas S., Li J. Simultaneous Wireless Information and Power Transfer (SWIPT): Recent Advances and Future Challenges. IEEE Commun. Surv. Tutor. 2018;20:264–302. doi: 10.1109/COMST.2017.2783901. DOI

Zhang R., Ho C. MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Trans. Wirel. Commun. 2013;12:1989–2001. doi: 10.1109/TWC.2013.031813.120224. DOI

Zhou X., Zhang R., Ho C. Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Trans. Commun. 2013;61:4754–4767. doi: 10.1109/TCOMM.2013.13.120855. DOI

Liu L., Zhang R., Chua K. Wireless Information Transfer with Opportunistic Energy Harvesting. IEEE Trans. Wirel. Commun. 2013;12:288–300. doi: 10.1109/TWC.2012.113012.120500. DOI

Ng D.W.K., Lo E.S., Schober R. Wireless Information and Power Transfer: Energy Efficiency Optimization in OFDMA Systems. IEEE Trans. Wirel. Commun. 2013;12:6352–6370. doi: 10.1109/TWC.2013.103113.130470. DOI

Chang Z., Wang Z., Guo X., Yang C., Han Z., Ristaniemi T. Distributed Resource Allocation for Energy Efficiency in OFDMA Multicell Networks With Wireless Power Transfer. IEEE J. Sel. Areas Commun. 2019;37:345–356. doi: 10.1109/JSAC.2018.2872398. DOI

Ng D.W.K., Schober R. Dynamic resource allocation in OFDMA systems with full-duplex and hybrid relaying; Proceedings of the 2011 IEEE International Conference on Communications (ICC); Kyoto, Japan. 5–9 June 2011; pp. 1–6.

Zhang M., Liu Y. Energy Harvesting for Physical-Layer Security in OFDMA Networks. IEEE Trans. Inf. Forens. Secur. 2016;11:154–162. doi: 10.1109/TIFS.2015.2481797. DOI

Yu H., Guo S., Yang Y., Ji L., Yang Y. Secrecy Energy Efficiency Optimization for Downlink Two-User OFDMA Networks with SWIPT. IEEE Syst. J. 2019;13:324–335. doi: 10.1109/JSYST.2017.2775607. DOI

Nasir A.A., Zhou X., Durrani S., Kennedy R.A. Relaying protocols for wireless energy harvesting and information processing. IEEE Trans. Wirel. Commun. 2013;12:3622–3636. doi: 10.1109/TWC.2013.062413.122042. DOI

Nguyen H.-S., Nguyen T.-S., Voznak M. Wireless powered D2D communications underlying cellular networks: Design and performance of the extended coverage. Automatika. 2017;58:391–399. doi: 10.1080/00051144.2018.1455016. DOI

Xia M., Assa S. Modeling and analysis of cooperative relaying in spectrum-sharing cellular systems. IEEE Trans. Veh. Technol. 2016;65:9112–9122. doi: 10.1109/TVT.2016.2517042. DOI

Chen E., Xia M., da Costa D.B., Assa S. Multi-hop cooperative relaying with energy harvesting from cochannel interferences. IET Commun. 2017;21:1089–7798. doi: 10.1109/LCOMM.2017.2655039. DOI

Laneman J.N., Tse D.N.C., Wornell G.W. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Trans. Inf. Theor. 2004;50:3062–3080. doi: 10.1109/TIT.2004.838089. DOI

Bhatnagar M.R., Hjorungnes A. ML decoder for decode-and-forward based cooperative communication system. IEEE Trans. Wirel. Commun. 2011;10:4080–4090. doi: 10.1109/TWC.2011.100611.101341. DOI

Li Y., Vucetic B. On the performance of a simple adaptive relaying protocol for wireless relay networks; Proceedings of the VTC Spring 2008—IEEE Vehicular Technology Conference; Marina Bay, Singapore. 11–14 May 2008.

Su W., Liu X. On optimum selection relaying protocols in cooperative wireless networks. IEEE Trans. Commun. 2010;58:52–57. doi: 10.1109/TCOMM.2010.01.060691. DOI

Zhang T., Chen W., Cao Z. Opportunistic DF-AF selection relaying with optimal relay selection in Nakagami-m fading environments; Proceedings of the 2012 1st IEEE International Conference on Communications in China (ICCC); Beijing, China. 15–17 August 2012; pp. 619–624.

Li D. Opportunistic DF-AF Selection for Cognitive Relay Networks. IEEE Trans. Veh. Technol. 2016;65:2790–2796. doi: 10.1109/TVT.2015.2418535. DOI

Xiuping W., Feng Y., Tian Z. The DF-AF Selection Relay Transmission Based on Energy Harvesting; Proceedings of the 10th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA); Changsha, China. 10–11 February 2018; pp. 174–177.

Nguyen H.-S., Bui A., Do D., Voznak M. Imperfect channel state information of AF and DF energy harvesting cooperative networks. China Commun. 2016;13:11–19. doi: 10.1109/CC.2016.7732008. DOI

Riihonen T., Werner S., Wichman R. Hybrid Full-Duplex/Half-Duplex Relaying with Transmit Power Adaptation. IEEE Trans. Wirel. Commun. 2011;10:3074–3085. doi: 10.1109/TWC.2011.071411.102266. DOI

Nguyen H.-S., Nguyen T.-S., Vo V.-T., Voznak M. Hybrid full-duplex/half-duplex relay selection scheme with optimal power under individual power constraints and energy harvesting. Comput. Commun. 2018;124:31–44. doi: 10.1016/j.comcom.2018.04.014. DOI

Zhang Z., Chai X., Long K., Vasilakos A.V., Hanzo L. Full duplex techniques for 5G networks: Self-interference cancellation, protocol design, and relay selection. IEEE Commun. Mag. 2015;53:128–137. doi: 10.1109/MCOM.2015.7105651. DOI

Foschini G.J. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Syst. Technol. J. 1996;1:41–59. doi: 10.1002/bltj.2015. DOI

Krikidis I., Suraweera H.A., Smith P.J., Yuen C. Full-Duplex Relay Selection for Amplify-and-Forward Cooperative Networks. IEEE Trans. Wirel. Commun. 2012;11:4381–4393. doi: 10.1109/TWC.2012.101912.111944. DOI

Luo S., Teh K.C. Buffer State Based Relay Selection for Buffer-Aided Cooperative Relaying Systems. IEEE Trans. Wirel. Commun. 2015;14:5430–5439. doi: 10.1109/TWC.2015.2438296. DOI

Zou Y., Champagne B., Zhu W., Hanzo L. Relay-Selection Improves the Security-Reliability Trade-Off in Cognitive Radio Systems. IEEE Trans. Commun. 2015;63:215–228. doi: 10.1109/TCOMM.2014.2377239. DOI

Wang W., Teh K.C., Li K.H. Generalized Relay Selection for Improved Security in Cooperative DF Relay Networks. IEEE Wirel. Commun. Lett. 2016;5:28–31. doi: 10.1109/LWC.2015.2488660. DOI

Oestges C., Czink N., Bandemer B., Paulraj A. Capacity performance of outdoor-to-indoor relay schemes in measured radio channels; Proceedings of the IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications; Tokyo, Japan. 13–16 September 2009; pp. 1113–1117.

Renzo M.D., Graziosi F., Santucci F. A comprehensive framework for performance analysis of cooperative multi-hop wireless systems over log-normal fading channels. IEEE Trans. Commun. 2010;58:531–544. doi: 10.1109/TCOMM.2010.02.080273. DOI

Nouri H., Touati F., Uysal M. Diversity-Multiplexing Tradeoff for Log-Normal Fading Channels. IEEE Trans. Commun. 2016;64:3119–3129. doi: 10.1109/TCOMM.2016.2575019. DOI

Zhu B., Cheng J., Yan J., Wang J., Wu L., Wang Y. A new technique for analyzing asymptotic outage performance of diversity over log-normal fading channels; Proceedings of the 15th Canadian Workshop on Information Theory (CWIT); Quebec City, QC, Canada. 11–14 June 2017; pp. 1–5.

Cammin C., Krush D., Heynicke R., Scholl G. Test method for narrowband F/TDMA-based wireless sensor/actuator networks including radio channel emulation in severe multipath environments. J. Sens. Sens. Syst. 2018;7:183–192. doi: 10.5194/jsss-7-183-2018. DOI

Liu Y., Xiao R., Shen J., Yang H., Yan C. Hybrid protocol for wireless energy harvesting network over log-normal fading channel. J. Eng. 2018;6:339–341. doi: 10.1049/joe.2017.0892. DOI

Liu Y., Shen J., Pan Z., Xiao R., Yang H., Yan C. Performance analysis of dual-hop AF relaying networks over log-normal fading channels with interferences; Proceedings of the IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops); Changchun, China. 1–13 August 2019; pp. 130–135.

Rabie K., Tonello A.M., Al-Dhahir N., Song J., Sendin A. IEEE Access Special Section Editorial: Advances in Power Line Communication and its Applications. IEEE Access. 2019;7:133371–133374. doi: 10.1109/ACCESS.2019.2942516. DOI

Rubin I., Lin Y., Kofman D. Relay-aided networking for power line communications; Proceedings of the 2014 Information Theory and Applications Workshop (ITA); San Diego, CA, USA. 9–14 February 2014; pp. 1–6.

Qian Y., Yan J., Guan H., Li J., Zhou X., Guo S., Jayakody D.N.K. Design of Hybrid Wireless and Power Line Sensor Networks With Dual-Interface Relay in IoT. IEEE Internet Things J. 2019;6:239–249. doi: 10.1109/JIOT.2017.2725451. DOI

Lee J., Kim Y. Diversity Relaying for Parallel Use of Power-Line and Wireless Communication Networks. IEEE Trans. Power Deliv. 2014;29:1301–1310. doi: 10.1109/TPWRD.2013.2290034. DOI

Dib L.d.M.B.A., Fernandes V., Filomeno M.d.L., Ribeiro M.V. Hybrid PLC/Wireless Communication for Smart Grids and Internet of Things Applications. IEEE Internet Things J. 2018;5:655–667. doi: 10.1109/JIOT.2017.2764747. DOI

Rabie K.M., Adebisi B., Yousif E.H.G., Gacanin H., Tonello A.M. A comparison between orthogonal and non-orthogonal multiple access in cooperative relaying power line communication systems. IEEE Access. 2017;5:10118–10129. doi: 10.1109/ACCESS.2017.2710280. DOI

Pu H., Liu X., Zhang S., Xu D. Adaptive cooperative non-orthogonal multiple access-based power line communication. IEEE Access. 2019;7:73856–73869. doi: 10.1109/ACCESS.2019.2920244. DOI

Ahiadormey R.K., Anokye P., Lee K.-J. Cooperative non-orthogonal multiple access over log-normal power line communication channels. Electronics. 2019;8:1254. doi: 10.3390/electronics8111254. DOI

Ahiadormey R.K., Anokye P., Park S.-H., Lee K.-J. Two-Way Relaying Non-Orthogonal Multiple Access with Imperfect Successive Interference Cancellation in Power Line Communications. IEEE Open J. Commun. Soc. 2020;1:1872–1885. doi: 10.1109/OJCOMS.2020.3039255. DOI

Bletsas A., Khisti A., Reed D., Lippman A. A simple cooperative diversity method based on network path selection. IEEE J. Sel. Areas Commun. 2006;24:659–672. doi: 10.1109/JSAC.2005.862417. DOI

Wang H., Ma S., Ng T.-S., Poor H.V. A general analytical approach for opportunistic cooperative systems with spatially random relays. IEEE Trans. Wirel. Commun. 2011;10:4122–4129. doi: 10.1109/TWC.2011.093011.101386. DOI

Nasir A.A., Zhou X., Durrani S., Kennedy R.A. Wireless-Powered Relays in Cooperative Communications: Time-Switching Relaying Protocols and Throughput Analysis. IEEE Trans. Commun. 2015;63:1607–1622. doi: 10.1109/TCOMM.2015.2415480. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...