Effect of In-Mold Annealing on the Properties of Asymmetric Poly(l-lactide)/Poly(d-lactide) Blends Incorporated with Nanohydroxyapatite
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
SGS-2019-5015
Technická Univerzita v Liberci
CZ.02.1.01/0.0/0.0/16_019/0000843
Ministry of Education, Youth and Sports of the Czech Republic and the European Union - European Structural and Investment Funds in the frames of Operational Program Research, Development and Education
PubMed
34451374
PubMed Central
PMC8398253
DOI
10.3390/polym13162835
PII: polym13162835
Knihovny.cz E-resources
- Keywords
- crystallization, heat resistance, impact resistance, mechanical properties, nanocomposites, nanohydroxyapatite, poly(d-lactide), poly(l-lactide), stereocomplex,
- Publication type
- Journal Article MeSH
The proper choice of a material system for bioresorbable synthetic bone graft substitutes imposes strict requirements for mechanical properties, bioactivity, biocompatibility, and osteoconductivity. This study aims to characterize the effect of in-mold annealing on the properties of nanocomposite systems based on asymmetric poly(l-lactide) (PLLA)/Poly(d-lactide) (PDLA) blends at 5 wt.% PDLA loading, which was incorporated with nano-hydroxyapatite (HA) at various concentrations (1, 5, 10, 15 wt.%). Samples were melt-blended and injection molded into "cold" mold (50 °C) and hot mold (100 °C). The results showed that the tensile modulus, crystallinity, and thermal-resistance were enhanced with increasing content of HA and blending with 5 wt.% of PDLA. In-mold annealing further improved the properties mentioned above by achieving a higher degree of crystallinity. In-mold annealed PLLA/5PDLA/15HA samples showed an increase of crystallinity by ~59%, tensile modulus by ~28%, and VST by ~44% when compared to neat hot molded PLLA. On the other hand, the % elongation values at break as well as tensile strength of the PLLA and asymmetric nanocomposites were lowered with increasing HA content and in-mold annealing. Moreover, in-mold annealing of asymmetric blends and related nanocomposites caused the embrittlement of material systems. Impact toughness, when compared to neat cold molded PLLA, was improved by ~44% with in-mold annealing of PLLA/1HA. Furthermore, fracture morphology revealed fine dispersion and distribution of HA at 1 wt.% concentration. On the other hand, HA at a high concentration of 15 wt.% show agglomerates that worked as stress concentrators during impact loading.
See more in PubMed
Nagalakshmaiah M., Afrin S., Malladi R.P., Elkoun S., Robert M., Ansari M.A., Svedberg A., Karim Z. Green Composites for Automotive Applications. Woodhead Publishing; Sawston, UK: 2019. Biocomposites: Present trends and challenges for the future; pp. 197–215.
Ganapini W. Bioplastics: A Case Study of Bioeconomy in Italy. Edizioni Ambiente; Milan, Italy: 2014.
Watkins E., Schweitzer J.-P. Think 2030. Brussels: Institute for European Environmental Policy (IEEP) IEEP; Brussels, Belgium: 2018. Moving towards a circular economy for plastics in the EU by 2030.
Masutani K., Kimura Y. Synthesis, Structure and Properties of Poly(Lactic Acid) Springer; Cham, Switzerland: 2017. Present situation and future perspectives of poly (lactic acid) pp. 1–25.
Fiorentino G., Ripa M., Ulgiati S. Chemicals from Biomass: Technological versus Environmental Feasibility. A Review. Biofuel. Bioprod. Biorefin. 2017;11:195–214. doi: 10.1002/bbb.1729. DOI
Groot W., Van Krieken J., Sliekersl O., De Vos S. POLY (LACTIC ACID): Synthesis, Structures, Properties, Processing, and Applications. Volume 1. Wiley; Hoboken, NJ, USA: 2010. Production and Purification of Lactic Acid and Lactide; pp. 1–18.
Lim L.-T., Auras R., Rubino M. Processing Technologies for Poly(Lactic Acid) Prog. Polym. Sci. 2008;33:820–852. doi: 10.1016/j.progpolymsci.2008.05.004. DOI
Reddy M.M., Vivekanandhan S., Misra M., Bhatia S.K., Mohanty A.K. Biobased Plastics and Bionanocomposites: Current Status and Future Opportunities. Prog. Polym. Sci. 2013;38:1653–1689. doi: 10.1016/j.progpolymsci.2013.05.006. DOI
Tsuji H. Poly(Lactic Acid) Stereocomplexes: A Decade of Progress. Adv. Drug Deliv. Rev. 2016;107:97–135. doi: 10.1016/j.addr.2016.04.017. PubMed DOI
Na B., Zhu J., Lv R., Ju Y., Tian R., Chen B. Stereocomplex Formation in Enantiomeric Polylactides by Melting Recrystallization of Homocrystals: Crystallization Kinetics and Crystal Morphology. Macromolecules. 2014;47:347–352. doi: 10.1021/ma402405c. DOI
Tan B.H., Muiruri J.K., Li Z., He C. Recent Progress in Using Stereocomplexation for Enhancement of Thermal and Mechanical Property of Polylactide. ACS Sustain. Chem. Eng. 2016;4:5370–5391. doi: 10.1021/acssuschemeng.6b01713. DOI
Ikada Y., Jamshidi K., Tsuji H., Hyon S.H. Stereocomplex Formation between Enantiomeric Poly (Lactides) Macromolecules. 1987;20:904–906. doi: 10.1021/ma00170a034. DOI
Tsuji H., Ikada Y. Stereocomplex Formation between Enantiomeric Poly(Lactic Acid) s. XI. Mechanical Properties and Morphology of Solution-Cast Films. Polymer. 1999;40:6699–6708. doi: 10.1016/S0032-3861(99)00004-X. DOI
Tsuji H. Poly (Lactide) Stereocomplexes: Formation, Structure, Properties, Degradation, and Applications. Macromol. Biosci. 2005;5:569–597. doi: 10.1002/mabi.200500062. PubMed DOI
Yin H.-Y., Wei X.-F., Bao R.-Y., Dong Q.-X., Liu Z.-Y., Yang W., Xie B.-H., Yang M.-B. Enantiomeric Poly(d-lactide) with a Higher Melting Point Served as a Significant Nucleating Agent for Poly (l-Lactide) CrystEngComm. 2015;17:4334–4342. doi: 10.1039/C5CE00645G. DOI
Luo F., Fortenberry A., Ren J., Qiang Z. Recent Progress in Enhancing Poly(Lactic Acid) Stereocomplex Formation for Material Property Improvement. Front. Chem. 2020;8:688. doi: 10.3389/fchem.2020.00688. PubMed DOI PMC
Yamane H., Sasai K., Takano M., Takahashi M. Poly (d-Lactic Acid) as a Rheological Modifier of Poly (l-Lactic Acid): Shear and Biaxial Extensional Flow Behavior. J. Rheol. 2004;48:599–609. doi: 10.1122/1.1687736. DOI
Inkinen S., Stolt M., Södergård A. Effect of Blending Ratio and Oligomer Structure on the Thermal Transitions of Stereocomplexes Consisting of Ad-lactic Acid Oligomer and Poly (l-lactide) Polym. Adv. Technol. 2011;22:1658–1664. doi: 10.1002/pat.1654. DOI
Shi X., Jing Z., Zhang G. Influence of PLA Stereocomplex Crystals and Thermal Treatment Temperature on the Rheology and Crystallization Behavior of Asymmetric Poly(l-lactide)/Poly(d-lactide) Blends. J. Polym. Res. 2018;25:71. doi: 10.1007/s10965-018-1467-9. DOI
Wei X.-F., Bao R.-Y., Cao Z.-Q., Yang W., Xie B.-H., Yang M.-B. Stereocomplex Crystallite Network in Asymmetric PLLA/PDLA Blends: Formation, Structure, and Confining Effect on the Crystallization Rate of Homocrystallites. Macromolecules. 2014;47:1439–1448. doi: 10.1021/ma402653a. DOI
Wang J., Lv R., Wang B., Na B., Liu H. Direct Observation of a Stereocomplex Crystallite Network in the Asymmetric Polylactide Enantiomeric Blends. Polymer. 2018;143:52–57. doi: 10.1016/j.polymer.2018.04.012. DOI
Rasal R.M., Janorkar A.V., Hirt D.E. Poly(Lactic Acid) Modifications. Prog. Polym. Sci. 2010;35:338–356. doi: 10.1016/j.progpolymsci.2009.12.003. DOI
Yang S., Leong K.-F., Du Z., Chua C.-K. The Design of Scaffolds for Use in Tissue Engineering. Part I. Traditional Factors. Tissue Eng. 2001;7:679–689. doi: 10.1089/107632701753337645. PubMed DOI
Nazhat S., Kellomäki M., Törmälä P., Tanner K., Bonfield W. Dynamic Mechanical Characterization of Biodegradable Composites of Hydroxyapatite and Polylactides. J. Biomed. Mater. Res. 2001;58:335–343. doi: 10.1002/jbm.1026. PubMed DOI
Teo W., Liao S., Chan C., Ramakrishna S. Fabrication and Characterization of Hierarchically Organized Nanoparticle-Reinforced Nanofibrous Composite Scaffolds. Acta Biomater. 2011;7:193–202. doi: 10.1016/j.actbio.2010.07.041. PubMed DOI
Hanemann T., Szabó D.V. Polymer-Nanoparticle Composites: From Synthesis to Modern Applications. Materials. 2010;3:3468–3517. doi: 10.3390/ma3063468. DOI
Hasnain M.S., Ahmad S.A., Chaudhary N., Hoda M.N., Nayak A.K. 1-Biodegradable polymer matrix nanocomposites for bone tissue engineering. In: Inamuddin, Asiri A.M., Mohammad A., editors. Applications of Nanocomposite Materials in Orthopedics. Woodhead Publishing; Sawston, UK: 2019. pp. 1–37. (Woodhead Publishing Series in Biomaterials).
Bharadwaz A., Jayasuriya A.C. Recent Trends in the Application of Widely Used Natural and Synthetic Polymer Nanocomposites in Bone Tissue Regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;110:110698. doi: 10.1016/j.msec.2020.110698. PubMed DOI PMC
Seunarine K., Gadegaard N., Tormen M., Meredith D., Riehle M., Wilkinson C. 3D Polymer Scaffolds for Tissue Engineering. Nanomedicine. 2006;1:281–296. doi: 10.2217/17435889.1.3.281. PubMed DOI
Ishii S., Tamura J., Furukawa T., Nakamura T., Matsusue Y., Shikinami Y., Okuno M. Long-Term Study of High-Strength Hydroxyapatite/Poly(l-lactide) Composite Rods for the Internal Fixation of Bone Fractures: A 2–4-Year Follow-up Study in Rabbits. J. Biomed. Mater. Res. B App. Biomater. 2003;66B:539–547. doi: 10.1002/jbm.b.10027. PubMed DOI
Lin P.-L., Fang H.-W., Tseng T., Lee W.-H. Effects of Hydroxyapatite Dosage on Mechanical and Biological Behaviors of Polylactic Acid Composite Materials. ASC Mater. Lett. 2007;61:3009–3013. doi: 10.1016/j.matlet.2006.10.064. DOI
Salerno A., Fernández-Gutiérrez M., del Barrio J.S.R., Pascual C.D. Macroporous and Nanometre Scale Fibrous PLA and PLA–HA Composite Scaffolds Fabricated by a Bio Safe Strategy. RSC Adv. 2014;4:61491–61502. doi: 10.1039/C4RA07732F. DOI
Akindoyo J.O., Beg M.D., Ghazali S., Alam A., Heim H.P., Feldmann M. Synergized Poly(Lactic Acid)–Hydroxyapatite Composites: Biocompatibility Study. J. Appl. Polym. Sci. 2019;136:47400. doi: 10.1002/app.47400. DOI
Šupová M. Problem of Hydroxyapatite Dispersion in Polymer Matrices: A Review. J. Mater. Sci. Mater. Med. 2009;20:1201–1213. doi: 10.1007/s10856-009-3696-2. PubMed DOI
Akindoyo J.O., Beg M.D., Ghazali S., Heim H.P., Feldmann M. Effects of Surface Modification on Dispersion, Mechanical, Thermal and Dynamic Mechanical Properties of Injection Molded PLA-Hydroxyapatite Composites. Compos. Part A Appl. Sci. Manuf. 2017;103:96–105. doi: 10.1016/j.compositesa.2017.09.013. DOI
Akindoyo J.O., Beg M.D., Ghazali S., Heim H.P., Feldmann M. Impact Modified PLA-Hydroxyapatite Composites–Thermo-Mechanical Properties. Compos. Part A Appl. Sci. Manuf. 2018;107:326–333. doi: 10.1016/j.compositesa.2018.01.017. DOI
Hong Z., Qiu X., Sun J., Deng M., Chen X., Jing X. Grafting Polymerization of l-Lactide on the Surface of Hydroxyapatite Nano-Crystals. Polymer. 2004;45:6699–6706. doi: 10.1016/j.polymer.2004.07.036. DOI
Hong Z., Zhang P., He C., Qiu X., Liu A., Chen L., Chen X., Jing X. Nano-Composite of Poly(l-lactide) and Surface Grafted Hydroxyapatite: Mechanical Properties and Biocompatibility. Biomaterials. 2005;26:6296–6304. doi: 10.1016/j.biomaterials.2005.04.018. PubMed DOI
Ko H.-S., Lee S., Lee D., Jho J.Y. Mechanical Properties and Bioactivity of Poly(Lactic Acid) Composites Containing Poly(Glycolic Acid) Fiber and Hydroxyapatite Particles. Nanomaterials. 2021;11:249. doi: 10.3390/nano11010249. PubMed DOI PMC
Shuai C., Yu L., Yang W., Peng S., Zhong Y., Feng P. Phosphonic Acid Coupling Agent Modification of HAP Nanoparticles: Interfacial Effects in PLLA/HAP Bone Scaffold. Polymers. 2020;12:199. doi: 10.3390/polym12010199. PubMed DOI PMC
Ferri J., Jordá J., Montanes N., Fenollar O., Balart R. Manufacturing and Characterization of Poly(Lactic Acid) Composites with Hydroxyapatite. J. Thermoplast. Compos. Mater. 2018;31:865–881. doi: 10.1177/0892705717729014. DOI
Henton D.E., Gruber P., Lunt J., Randall J. Natural Fibers, Biopolymers, and Biocomposites. 1st ed. Volume 16. CRC Press; Boca Raton, FL, USA: 2005. Polylactic Acid Technology; pp. 527–577.
Sarasua J.-R., Prud’Homme R.E., Wisniewski M., Le Borgne A., Spassky N. Crystallization and Melting Behavior of Polylactides. Macromolecules. 1998;31:3895–3905. doi: 10.1021/ma971545p. DOI
Sarasua J., Arraiza A.L., Balerdi P., Maiza I. Crystallization and Thermal Behaviour of Optically Pure Polylactides and Their Blends. J. Mater. Sci. 2005;40:1855–1862. doi: 10.1007/s10853-005-1204-8. DOI
Zhou S., Zheng X., Yu X., Wang J., Weng J., Li X., Feng B., Yin M. Hydrogen Bonding Interaction of Poly(d,l-lactide)/Hydroxyapatite Nanocomposites. Chem. Mater. 2007;19:247–253. doi: 10.1021/cm0619398. DOI
Lv T., Li J., Huang S., Wen H., Li H., Chen J., Jiang S. Synergistic Effects of Chain Dynamics and Enantiomeric Interaction on the Crystallization in PDLA/PLLA Mixtures. Polymer. 2021;222:123648. doi: 10.1016/j.polymer.2021.123648. DOI
Vadori R., Mohanty A.K., Misra M. The Effect of Mold Temperature on the Performance of Injection Molded Poly(Lactic Acid)-Based Bioplastic: The Effect of Mold Temperature on the Performance of Injection Molded Poly(Lactic Acid)-Based Bioplastic. Macromol. Mater. Eng. 2013;298:981–990. doi: 10.1002/mame.201200274. DOI
Kawamoto N., Sakai A., Horikoshi T., Urushihara T., Tobita E. Physical and Mechanical Properties of Poly (l-lactic Acid) Nucleated by Dibenzoylhydrazide Compound. J. Appl. Polym. Sci. 2007;103:244–250. doi: 10.1002/app.25185. DOI
Tang Z., Zhang C., Liu X., Zhu J. The Crystallization Behavior and Mechanical Properties of Polylactic Acid in the Presence of a Crystal Nucleating Agent. J. Appl. Polym. Sci. 2012;125:1108–1115. doi: 10.1002/app.34799. DOI
Kramer E.J., Berger L.L. Crazing in Polymers Vol. 2. Springer; Cham, Switzerland: 1990. Fundamental processes of craze growth and fracture; pp. 1–68.
Renouf-Glauser A.C., Rose J., Farrar D.F., Cameron R.E. The Effect of Crystallinity on the Deformation Mechanism and Bulk Mechanical Properties of PLLA. Biomaterials. 2005;26:5771–5782. doi: 10.1016/j.biomaterials.2005.03.002. PubMed DOI
Park S.D., Todo M., Arakawa K., Koganemaru M. Effect of Crystallinity and Loading-Rate on Mode I Fracture Behavior of Poly(Lactic Acid) Polymer. 2006;47:1357–1363. doi: 10.1016/j.polymer.2005.12.046. DOI
Way J., Atkinson J., Nutting J. The Effect of Spherulite Size on the Fracture Morphology of Polypropylene. J. Mater. Sci. 1974;9:293–299. doi: 10.1007/BF00550954. DOI
Andrews E. Microfibrillar Textures in Polymer Fibers. J. Polym. Sci. Part A-2 Polym. Phys. 1966;4:668–672. doi: 10.1002/pol.1966.160040413. DOI
Graham I., Marshall G., Williams J. The Fracture Mechanics of Crazes. Springer; Cham, Switzerland: 1973. pp. 261–272.