• This record comes from PubMed

Effect of In-Mold Annealing on the Properties of Asymmetric Poly(l-lactide)/Poly(d-lactide) Blends Incorporated with Nanohydroxyapatite

. 2021 Aug 23 ; 13 (16) : . [epub] 20210823

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
SGS-2019-5015 Technická Univerzita v Liberci
CZ.02.1.01/0.0/0.0/16_019/0000843 Ministry of Education, Youth and Sports of the Czech Republic and the European Union - European Structural and Investment Funds in the frames of Operational Program Research, Development and Education

The proper choice of a material system for bioresorbable synthetic bone graft substitutes imposes strict requirements for mechanical properties, bioactivity, biocompatibility, and osteoconductivity. This study aims to characterize the effect of in-mold annealing on the properties of nanocomposite systems based on asymmetric poly(l-lactide) (PLLA)/Poly(d-lactide) (PDLA) blends at 5 wt.% PDLA loading, which was incorporated with nano-hydroxyapatite (HA) at various concentrations (1, 5, 10, 15 wt.%). Samples were melt-blended and injection molded into "cold" mold (50 °C) and hot mold (100 °C). The results showed that the tensile modulus, crystallinity, and thermal-resistance were enhanced with increasing content of HA and blending with 5 wt.% of PDLA. In-mold annealing further improved the properties mentioned above by achieving a higher degree of crystallinity. In-mold annealed PLLA/5PDLA/15HA samples showed an increase of crystallinity by ~59%, tensile modulus by ~28%, and VST by ~44% when compared to neat hot molded PLLA. On the other hand, the % elongation values at break as well as tensile strength of the PLLA and asymmetric nanocomposites were lowered with increasing HA content and in-mold annealing. Moreover, in-mold annealing of asymmetric blends and related nanocomposites caused the embrittlement of material systems. Impact toughness, when compared to neat cold molded PLLA, was improved by ~44% with in-mold annealing of PLLA/1HA. Furthermore, fracture morphology revealed fine dispersion and distribution of HA at 1 wt.% concentration. On the other hand, HA at a high concentration of 15 wt.% show agglomerates that worked as stress concentrators during impact loading.

See more in PubMed

Nagalakshmaiah M., Afrin S., Malladi R.P., Elkoun S., Robert M., Ansari M.A., Svedberg A., Karim Z. Green Composites for Automotive Applications. Woodhead Publishing; Sawston, UK: 2019. Biocomposites: Present trends and challenges for the future; pp. 197–215.

Ganapini W. Bioplastics: A Case Study of Bioeconomy in Italy. Edizioni Ambiente; Milan, Italy: 2014.

Watkins E., Schweitzer J.-P. Think 2030. Brussels: Institute for European Environmental Policy (IEEP) IEEP; Brussels, Belgium: 2018. Moving towards a circular economy for plastics in the EU by 2030.

Masutani K., Kimura Y. Synthesis, Structure and Properties of Poly(Lactic Acid) Springer; Cham, Switzerland: 2017. Present situation and future perspectives of poly (lactic acid) pp. 1–25.

Fiorentino G., Ripa M., Ulgiati S. Chemicals from Biomass: Technological versus Environmental Feasibility. A Review. Biofuel. Bioprod. Biorefin. 2017;11:195–214. doi: 10.1002/bbb.1729. DOI

Groot W., Van Krieken J., Sliekersl O., De Vos S. POLY (LACTIC ACID): Synthesis, Structures, Properties, Processing, and Applications. Volume 1. Wiley; Hoboken, NJ, USA: 2010. Production and Purification of Lactic Acid and Lactide; pp. 1–18.

Lim L.-T., Auras R., Rubino M. Processing Technologies for Poly(Lactic Acid) Prog. Polym. Sci. 2008;33:820–852. doi: 10.1016/j.progpolymsci.2008.05.004. DOI

Reddy M.M., Vivekanandhan S., Misra M., Bhatia S.K., Mohanty A.K. Biobased Plastics and Bionanocomposites: Current Status and Future Opportunities. Prog. Polym. Sci. 2013;38:1653–1689. doi: 10.1016/j.progpolymsci.2013.05.006. DOI

Tsuji H. Poly(Lactic Acid) Stereocomplexes: A Decade of Progress. Adv. Drug Deliv. Rev. 2016;107:97–135. doi: 10.1016/j.addr.2016.04.017. PubMed DOI

Na B., Zhu J., Lv R., Ju Y., Tian R., Chen B. Stereocomplex Formation in Enantiomeric Polylactides by Melting Recrystallization of Homocrystals: Crystallization Kinetics and Crystal Morphology. Macromolecules. 2014;47:347–352. doi: 10.1021/ma402405c. DOI

Tan B.H., Muiruri J.K., Li Z., He C. Recent Progress in Using Stereocomplexation for Enhancement of Thermal and Mechanical Property of Polylactide. ACS Sustain. Chem. Eng. 2016;4:5370–5391. doi: 10.1021/acssuschemeng.6b01713. DOI

Ikada Y., Jamshidi K., Tsuji H., Hyon S.H. Stereocomplex Formation between Enantiomeric Poly (Lactides) Macromolecules. 1987;20:904–906. doi: 10.1021/ma00170a034. DOI

Tsuji H., Ikada Y. Stereocomplex Formation between Enantiomeric Poly(Lactic Acid) s. XI. Mechanical Properties and Morphology of Solution-Cast Films. Polymer. 1999;40:6699–6708. doi: 10.1016/S0032-3861(99)00004-X. DOI

Tsuji H. Poly (Lactide) Stereocomplexes: Formation, Structure, Properties, Degradation, and Applications. Macromol. Biosci. 2005;5:569–597. doi: 10.1002/mabi.200500062. PubMed DOI

Yin H.-Y., Wei X.-F., Bao R.-Y., Dong Q.-X., Liu Z.-Y., Yang W., Xie B.-H., Yang M.-B. Enantiomeric Poly(d-lactide) with a Higher Melting Point Served as a Significant Nucleating Agent for Poly (l-Lactide) CrystEngComm. 2015;17:4334–4342. doi: 10.1039/C5CE00645G. DOI

Luo F., Fortenberry A., Ren J., Qiang Z. Recent Progress in Enhancing Poly(Lactic Acid) Stereocomplex Formation for Material Property Improvement. Front. Chem. 2020;8:688. doi: 10.3389/fchem.2020.00688. PubMed DOI PMC

Yamane H., Sasai K., Takano M., Takahashi M. Poly (d-Lactic Acid) as a Rheological Modifier of Poly (l-Lactic Acid): Shear and Biaxial Extensional Flow Behavior. J. Rheol. 2004;48:599–609. doi: 10.1122/1.1687736. DOI

Inkinen S., Stolt M., Södergård A. Effect of Blending Ratio and Oligomer Structure on the Thermal Transitions of Stereocomplexes Consisting of Ad-lactic Acid Oligomer and Poly (l-lactide) Polym. Adv. Technol. 2011;22:1658–1664. doi: 10.1002/pat.1654. DOI

Shi X., Jing Z., Zhang G. Influence of PLA Stereocomplex Crystals and Thermal Treatment Temperature on the Rheology and Crystallization Behavior of Asymmetric Poly(l-lactide)/Poly(d-lactide) Blends. J. Polym. Res. 2018;25:71. doi: 10.1007/s10965-018-1467-9. DOI

Wei X.-F., Bao R.-Y., Cao Z.-Q., Yang W., Xie B.-H., Yang M.-B. Stereocomplex Crystallite Network in Asymmetric PLLA/PDLA Blends: Formation, Structure, and Confining Effect on the Crystallization Rate of Homocrystallites. Macromolecules. 2014;47:1439–1448. doi: 10.1021/ma402653a. DOI

Wang J., Lv R., Wang B., Na B., Liu H. Direct Observation of a Stereocomplex Crystallite Network in the Asymmetric Polylactide Enantiomeric Blends. Polymer. 2018;143:52–57. doi: 10.1016/j.polymer.2018.04.012. DOI

Rasal R.M., Janorkar A.V., Hirt D.E. Poly(Lactic Acid) Modifications. Prog. Polym. Sci. 2010;35:338–356. doi: 10.1016/j.progpolymsci.2009.12.003. DOI

Yang S., Leong K.-F., Du Z., Chua C.-K. The Design of Scaffolds for Use in Tissue Engineering. Part I. Traditional Factors. Tissue Eng. 2001;7:679–689. doi: 10.1089/107632701753337645. PubMed DOI

Nazhat S., Kellomäki M., Törmälä P., Tanner K., Bonfield W. Dynamic Mechanical Characterization of Biodegradable Composites of Hydroxyapatite and Polylactides. J. Biomed. Mater. Res. 2001;58:335–343. doi: 10.1002/jbm.1026. PubMed DOI

Teo W., Liao S., Chan C., Ramakrishna S. Fabrication and Characterization of Hierarchically Organized Nanoparticle-Reinforced Nanofibrous Composite Scaffolds. Acta Biomater. 2011;7:193–202. doi: 10.1016/j.actbio.2010.07.041. PubMed DOI

Hanemann T., Szabó D.V. Polymer-Nanoparticle Composites: From Synthesis to Modern Applications. Materials. 2010;3:3468–3517. doi: 10.3390/ma3063468. DOI

Hasnain M.S., Ahmad S.A., Chaudhary N., Hoda M.N., Nayak A.K. 1-Biodegradable polymer matrix nanocomposites for bone tissue engineering. In: Inamuddin, Asiri A.M., Mohammad A., editors. Applications of Nanocomposite Materials in Orthopedics. Woodhead Publishing; Sawston, UK: 2019. pp. 1–37. (Woodhead Publishing Series in Biomaterials).

Bharadwaz A., Jayasuriya A.C. Recent Trends in the Application of Widely Used Natural and Synthetic Polymer Nanocomposites in Bone Tissue Regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;110:110698. doi: 10.1016/j.msec.2020.110698. PubMed DOI PMC

Seunarine K., Gadegaard N., Tormen M., Meredith D., Riehle M., Wilkinson C. 3D Polymer Scaffolds for Tissue Engineering. Nanomedicine. 2006;1:281–296. doi: 10.2217/17435889.1.3.281. PubMed DOI

Ishii S., Tamura J., Furukawa T., Nakamura T., Matsusue Y., Shikinami Y., Okuno M. Long-Term Study of High-Strength Hydroxyapatite/Poly(l-lactide) Composite Rods for the Internal Fixation of Bone Fractures: A 2–4-Year Follow-up Study in Rabbits. J. Biomed. Mater. Res. B App. Biomater. 2003;66B:539–547. doi: 10.1002/jbm.b.10027. PubMed DOI

Lin P.-L., Fang H.-W., Tseng T., Lee W.-H. Effects of Hydroxyapatite Dosage on Mechanical and Biological Behaviors of Polylactic Acid Composite Materials. ASC Mater. Lett. 2007;61:3009–3013. doi: 10.1016/j.matlet.2006.10.064. DOI

Salerno A., Fernández-Gutiérrez M., del Barrio J.S.R., Pascual C.D. Macroporous and Nanometre Scale Fibrous PLA and PLA–HA Composite Scaffolds Fabricated by a Bio Safe Strategy. RSC Adv. 2014;4:61491–61502. doi: 10.1039/C4RA07732F. DOI

Akindoyo J.O., Beg M.D., Ghazali S., Alam A., Heim H.P., Feldmann M. Synergized Poly(Lactic Acid)–Hydroxyapatite Composites: Biocompatibility Study. J. Appl. Polym. Sci. 2019;136:47400. doi: 10.1002/app.47400. DOI

Šupová M. Problem of Hydroxyapatite Dispersion in Polymer Matrices: A Review. J. Mater. Sci. Mater. Med. 2009;20:1201–1213. doi: 10.1007/s10856-009-3696-2. PubMed DOI

Akindoyo J.O., Beg M.D., Ghazali S., Heim H.P., Feldmann M. Effects of Surface Modification on Dispersion, Mechanical, Thermal and Dynamic Mechanical Properties of Injection Molded PLA-Hydroxyapatite Composites. Compos. Part A Appl. Sci. Manuf. 2017;103:96–105. doi: 10.1016/j.compositesa.2017.09.013. DOI

Akindoyo J.O., Beg M.D., Ghazali S., Heim H.P., Feldmann M. Impact Modified PLA-Hydroxyapatite Composites–Thermo-Mechanical Properties. Compos. Part A Appl. Sci. Manuf. 2018;107:326–333. doi: 10.1016/j.compositesa.2018.01.017. DOI

Hong Z., Qiu X., Sun J., Deng M., Chen X., Jing X. Grafting Polymerization of l-Lactide on the Surface of Hydroxyapatite Nano-Crystals. Polymer. 2004;45:6699–6706. doi: 10.1016/j.polymer.2004.07.036. DOI

Hong Z., Zhang P., He C., Qiu X., Liu A., Chen L., Chen X., Jing X. Nano-Composite of Poly(l-lactide) and Surface Grafted Hydroxyapatite: Mechanical Properties and Biocompatibility. Biomaterials. 2005;26:6296–6304. doi: 10.1016/j.biomaterials.2005.04.018. PubMed DOI

Ko H.-S., Lee S., Lee D., Jho J.Y. Mechanical Properties and Bioactivity of Poly(Lactic Acid) Composites Containing Poly(Glycolic Acid) Fiber and Hydroxyapatite Particles. Nanomaterials. 2021;11:249. doi: 10.3390/nano11010249. PubMed DOI PMC

Shuai C., Yu L., Yang W., Peng S., Zhong Y., Feng P. Phosphonic Acid Coupling Agent Modification of HAP Nanoparticles: Interfacial Effects in PLLA/HAP Bone Scaffold. Polymers. 2020;12:199. doi: 10.3390/polym12010199. PubMed DOI PMC

Ferri J., Jordá J., Montanes N., Fenollar O., Balart R. Manufacturing and Characterization of Poly(Lactic Acid) Composites with Hydroxyapatite. J. Thermoplast. Compos. Mater. 2018;31:865–881. doi: 10.1177/0892705717729014. DOI

Henton D.E., Gruber P., Lunt J., Randall J. Natural Fibers, Biopolymers, and Biocomposites. 1st ed. Volume 16. CRC Press; Boca Raton, FL, USA: 2005. Polylactic Acid Technology; pp. 527–577.

Sarasua J.-R., Prud’Homme R.E., Wisniewski M., Le Borgne A., Spassky N. Crystallization and Melting Behavior of Polylactides. Macromolecules. 1998;31:3895–3905. doi: 10.1021/ma971545p. DOI

Sarasua J., Arraiza A.L., Balerdi P., Maiza I. Crystallization and Thermal Behaviour of Optically Pure Polylactides and Their Blends. J. Mater. Sci. 2005;40:1855–1862. doi: 10.1007/s10853-005-1204-8. DOI

Zhou S., Zheng X., Yu X., Wang J., Weng J., Li X., Feng B., Yin M. Hydrogen Bonding Interaction of Poly(d,l-lactide)/Hydroxyapatite Nanocomposites. Chem. Mater. 2007;19:247–253. doi: 10.1021/cm0619398. DOI

Lv T., Li J., Huang S., Wen H., Li H., Chen J., Jiang S. Synergistic Effects of Chain Dynamics and Enantiomeric Interaction on the Crystallization in PDLA/PLLA Mixtures. Polymer. 2021;222:123648. doi: 10.1016/j.polymer.2021.123648. DOI

Vadori R., Mohanty A.K., Misra M. The Effect of Mold Temperature on the Performance of Injection Molded Poly(Lactic Acid)-Based Bioplastic: The Effect of Mold Temperature on the Performance of Injection Molded Poly(Lactic Acid)-Based Bioplastic. Macromol. Mater. Eng. 2013;298:981–990. doi: 10.1002/mame.201200274. DOI

Kawamoto N., Sakai A., Horikoshi T., Urushihara T., Tobita E. Physical and Mechanical Properties of Poly (l-lactic Acid) Nucleated by Dibenzoylhydrazide Compound. J. Appl. Polym. Sci. 2007;103:244–250. doi: 10.1002/app.25185. DOI

Tang Z., Zhang C., Liu X., Zhu J. The Crystallization Behavior and Mechanical Properties of Polylactic Acid in the Presence of a Crystal Nucleating Agent. J. Appl. Polym. Sci. 2012;125:1108–1115. doi: 10.1002/app.34799. DOI

Kramer E.J., Berger L.L. Crazing in Polymers Vol. 2. Springer; Cham, Switzerland: 1990. Fundamental processes of craze growth and fracture; pp. 1–68.

Renouf-Glauser A.C., Rose J., Farrar D.F., Cameron R.E. The Effect of Crystallinity on the Deformation Mechanism and Bulk Mechanical Properties of PLLA. Biomaterials. 2005;26:5771–5782. doi: 10.1016/j.biomaterials.2005.03.002. PubMed DOI

Park S.D., Todo M., Arakawa K., Koganemaru M. Effect of Crystallinity and Loading-Rate on Mode I Fracture Behavior of Poly(Lactic Acid) Polymer. 2006;47:1357–1363. doi: 10.1016/j.polymer.2005.12.046. DOI

Way J., Atkinson J., Nutting J. The Effect of Spherulite Size on the Fracture Morphology of Polypropylene. J. Mater. Sci. 1974;9:293–299. doi: 10.1007/BF00550954. DOI

Andrews E. Microfibrillar Textures in Polymer Fibers. J. Polym. Sci. Part A-2 Polym. Phys. 1966;4:668–672. doi: 10.1002/pol.1966.160040413. DOI

Graham I., Marshall G., Williams J. The Fracture Mechanics of Crazes. Springer; Cham, Switzerland: 1973. pp. 261–272.

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...