In Vitro Testing of Alternative Synthetic and Natural Antiparasitic Compounds against the Monogenean Sparicotyle chrysophrii

. 2021 Aug 03 ; 10 (8) : . [epub] 20210803

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34451443

Grantová podpora
634429 Horizon 2020 Framework Programme
RTI2018-098664-B-100A Spanish Ministry of Science, Innovation and Universities

Gill monogenean Sparicotyle chrysophrii is considered the most detrimental fish parasite to the Mediterranean aquaculture. Treatment of sparicotylosis relies on frequent gill inspections correlated with the seasonal increase in seawater temperature, application of functional feeds, and treatments with formalin baths where permitted. While the latter is bound to be banned in Europe, other synthetic anthelminthics, such as praziquantel and ivermectin, are prone to induce resistance in the parasites. Therefore, we investigated, in vitro, 14 synthetic and natural compounds against adult S. chrysophrii, developing dose-response modelsm and estimated toxicity levels at 20%, 50%, and 80% parasite mortality. Bactericidal activity of target compounds was also tested in two important aquaculture bacteria; Vibrio harveyi and V. anguillarum, while their potential host toxicity was evaluated in gilthead seabream SAF-1 cell line. Synthetic compound bithionate sodium exerted the most potent toxicity against the monogenean, no host cytotoxicity, and a medium and high potency against two bacterial pathogens. In comparison, target natural compounds were approximately 20 (cedrol) or up to 154 times (camphor) less toxic for the monogenean. Rather than completely dismissing natural compounds, we suggest that their application in combination with synthetic drugs, especially if administered in the feed, might be useful in sparicotylosis treatment.

Zobrazit více v PubMed

Sitjà-Bobadilla A., de Felipe M.C., Alvarez-Pellitero P. In vivo and in vitro treatments against Sparicotyle chrysophrii (Monogenea: Microcotylidae) parasitizing the gills of gilthead sea bream (Sparus aurata L.) Aquaculture. 2006;261:856–864. doi: 10.1016/j.aquaculture.2006.09.012. DOI

Sitjà-Bobadilla A., Alvarez-Pellitero P. Experimental transmission of Sparicotyle chrysophrii (Monogenea: Polyopisthocotylea) to gilthead seabream (Sparus aurata) and histopathology of the infection. Folia Parasitol. 2009;56:143–151. doi: 10.14411/fp.2009.018. PubMed DOI

Padrós F., Crespo S. Proliferative epitheliocystis associated with monogenean infection in juvenile seabream Sparus aurata in the north east of Spain. Bull Eur. Assoc. Fish Pathol. 1995;15:42–44.

Cruz e Silva M., Freitas M., Orge M. Co-infection by monogenetic trematodes of the genus Microcotyle V. Beneden & Hesse 1863, Lamellodiscus ignoratus Palombi, 1943, the protozoan Trichodina sp. Ehrenberg, 1838 and the presence of epitheliocystis, Vibrio algynoliticus. Bull. Eur. Assoc. Fish Pathol. 1997;17:40–42.

Caffara M., Quaglio F., Fioravanti M., Gustinelli A., Marcer F., Moscato M., Caggiano M. Atti del XII Convegno Nazionale S.I.P.I. Cesenatico (FC) Società Italiana di Patologia Ittica; Legnaro, Italy: 2005. Coinfezione da Polysporoplasma sparis (Myxozoa) e Sparicotyle chrysophrii (Monogenea) in orata (Sparus aurata) p. 47.

Oidtmann B.C., Cook A., Mladineo I., Beraldo P., Palenzuela O., Christofilogiannis P., Massimo M., Sitjà-Bobadilla A. Risk Factors for the Main Parasitic Infections in Gilthead Sea Bream and European Sea Bass Aquaculture: A View from Expert Consultation

European Chemicals Agency ECHA Formaldehyde and Formaldehyde Releasers—Strategy for Future Work. [(accessed on 18 March 2021)];2018 Available online: https://echa.europa.eu/documents/10162/13641formaldehyde_review_report_en.pdf/551df4a2-28c4-2fa9-98ec-c8d53e2bf0fc.

Leal J.F., Neves M.G.P.M.S., Santos E.B.H., Esteves V.I. Use of formalin in intensive aquaculture: Properties, application and effects on fish and water quality. Rev. Aquacult. 2018;10:281–295. doi: 10.1111/raq.12160. DOI

Rigos G., Fountoulaki E., Cotou E., Dotsika E., Doural N., Karacostas I. Tissue distribution and field evaluation of caprylic acid against natural infections of Sparicotyle chrysophrii in cage-reared gilthead sea bream Sparus aurata. Aquaculture. 2013;408–409:15–19. doi: 10.1016/j.aquaculture.2013.05.012. DOI

Rigos G., Mladineo I., Nikoloudaki C., Vrbatovic A., Kogiannou D. Application of compound mixture of caprylic acid, iron and mannan oligosaccharide against Sparicotyle chrysophrii (Monogenea: Polyopisthocotylea) in gilthead sea bream Sparus aurata. Folia Parasitol. 2016;63:27. doi: 10.14411/fp.2016.027. PubMed DOI

Firmino J.P., Vallejos-Vidal E., Sarasquete C., Ortiz-Delgado J.B., Balasch J.C., Tort L., Estevez A., Reyes-Lopez F.E., Gisbert E. Unveiling the effect of dietary essential oils supplementation in Sparus aurata gills and its efficiency against the infestation by Sparicotyle chrysophrii. Sci. Rep. 2020;10:17764. doi: 10.1038/s41598-020-74625-5. PubMed DOI PMC

Sun W., Park Y.-D., Sugui J.A., Fothergill A., Southall N., Shinn P., McKew J.C., Kwon-Chung K.J., Zheng W., Williamson P.R. Rapid identification of antifungal compounds against Exserohilum rostratum using high throughput drug repurposing screens. PLoS ONE. 2013;8:e70506. doi: 10.1371/journal.pone.0070506. PubMed DOI PMC

Harder A. Chemotherapeutic approaches to trematodes (except schistosomes) and cestodes: Current level of knowledge and outlook. Parasitol. Res. 2002;88:587–590. doi: 10.1007/s00436-001-0587-y. PubMed DOI

Ayyagari V.N., Brard L. Bithionol inhibits ovarian cancer cell growth in vitro—Studies on mechanism(s) of action. BMC Cancer. 2014;14:61. doi: 10.1186/1471-2407-14-61. PubMed DOI PMC

Buchmann K., Felsing A., Slotvd H.C. Effects of metrifonate, sodium chloride and bithionol on an European population of the gill parasitic monogeneans Pseudodactylogyrus spp. and the host Anguilla anguilla. Bull Eur. Assoc. Fish Pathol. 1992;12:57–60.

Kim K.H., Choi E.S. Treatment of Microcotyle sebastis (Monogenea) on the gills of cultured rockfish (Sebastes schelegeli) with oral administration of mebendazole and bithionol. Aquaculture. 1998;167:115–121. doi: 10.1016/S0044-8486(98)00300-7. DOI

Tojo J.L., Santamarina M.T. Oral pharmacological treatments for parasitic diseases of rainbow trout Oncorhynchus mykiss. II: Gyrodactylus sp. Dis. Aquat. Org. 1998;33:187–193. doi: 10.3354/dao033187. PubMed DOI

Tojo J.L., Santamarina M.T., Ubeira F.M., Leiro J., Sanmartin M.L. Attempts to control Ichthyobodo necator in rainbow trout (Oncorhynchus mykiss) by bath treatment. Bull. Eur. Assoc. Fish Pathol. 1994;14:12–15.

Tojo J.L., Santamarina M.T. Oral pharmacological treatments for parasitic diseases of rainbow trout Oncorhynchus mykiss. III: Ichthyobodo necator. Dis. Aquat. Organ. 1998;33:195–199. doi: 10.3354/dao033195. PubMed DOI

Tojo J.L., Santamarina M.T. Oral pharmacological treatments for parasitic diseases of rainbow trout Oncorhynchus mykiss. I: Hexamita salmonis. Dis. Aquat. Org. 1998;33:51–56. doi: 10.3354/dao033051. PubMed DOI

Powell M., Green T., Plaisted C. A cell culture assay for the in vitro efficacy testing of amoebocidal compounds against Neoparamoeba pemaquidensis. Bull. Eur. Assoc. Fish Pathol. 2003;23:291–296.

Florent R.L., Becker J.A., Powell M.D. Evaluation of bithionol as a bath treatment for amoebic gill disease caused by Neoparamoeba spp. Vet. Parasitol. 2007;144:197–207. doi: 10.1016/j.vetpar.2006.10.018. PubMed DOI

Madsen H.C.K., Buchmann K., Mellergaard S. Treatment of trichodiniasis in eel (Anguilla anguilla) reared in recirculation systems in Denmark: Alternatives to formaldehyde. Aquaculture. 2000;186:221–231. doi: 10.1016/S0044-8486(99)00379-8. PubMed DOI

Musdal Y., Hegazy U.M., Aksoy Y., Mannervik B. FDA-approved drugs and other compounds tested as inhibitors of human glutathione transferase P1-1. Chem. Biol. Interac. 2013;205:53–62. doi: 10.1016/j.cbi.2013.06.003. PubMed DOI

Jeong E., Lee M.Y., Lee J.H., Lee B.H., Oh K.-S. A dual readout assay based on fluorescence polarization and time-resolved fluorescence resonance energy transfer to screen for RSK1 inhibitors. Biol. Pharm. Bull. 2016;39:547–555. doi: 10.1248/bpb.b15-00808. PubMed DOI

Haynes M.K., Garcia M., Peters R., Waller A., Tedesco P., Ursu O., Bologa C.G., Santos R.G., Pinilla C., Wu T.H., et al. Bacterial Multidrug Exporters: Methods and Protocols, Methods in Molecular Biology. Springer; Berlin/Heidelberg, Germany: 2018. Chapter 16: High-throughput flow cytometry screening of multidrug efflux systems; pp. 239–318. PubMed DOI

Van Wyk B.-E., Wink M. Medicinal Plants of the World: An Illustrated Scientific Guide to Important Medicinal Plants and Their Uses. Timber Press; Portland, OR, USA: 2004.

Wink M. Medicinal plants: A source of anti-parasitic secondary metabolites. Molecules. 2012;17:12771–12791. doi: 10.3390/molecules171112771. PubMed DOI PMC

Guardiola F.A., Bahi A., Messina C.M., Mahdhi A., Santulli A., Arena R., Bakhrouf A., Esteban M.A. Quality and antioxidant response of gilthead seabream (Sparus aurata L.) to dietary supplements of fenugreek (Trigonella foenum graecum) alone or combined with probiotic strains. Fish Shellfish Immunol. 2017;63:277–284. doi: 10.1016/j.fsi.2017.02.029. PubMed DOI

Messina C.M., Bono G., Renda G., La Barbera L., Santulli A. Effect of natural antioxidants and modified atmosphere packaging in preventing lipid oxidation and increasing the shelf-life of common dolphinfish (Coryphaena hippurus) fillets. LWT Food Sci. Technol. 2015;62:271–277. doi: 10.1016/j.lwt.2015.01.029. DOI

Manuguerra S., Caccamo L., Mancuso M., Arena R., Rappazzo A.C., Genovese L., Santulli A., Messina C.M., Maricchiolo G. The antioxidant power of horseradish, Armoracia rusticana, underlies antimicrobial and antiradical effects, exerted in vitro. Nat. Prod. Res. 2020;34:1567–1570. doi: 10.1080/14786419.2018.1517121. PubMed DOI

Samoylenko V., Dunbar D.C., Gafur M.D.A., Khan S.I., Ross S.A., Mossa J.S., El-Feraly F.S., Tekwani B.L., Bosselaer J., Muhammad I. Antiparasitic, nematicidal and antifouling constituents from Juniperus berries. Phytother. Res. 2008;22:1570–1576. doi: 10.1002/ptr.2460. PubMed DOI

Kar N., Chakraborty S., De A.K., Ghosh S., Bera T. Development and evaluation of a cedrol-loaded nanostructured lipid carrier system for in vitro and in vivo susceptibilities of wild and drug resistant Leishmania donovani amastigotes. Europ. J. Pharmaceut. Sci. 2017;104:196–211. doi: 10.1016/j.ejps.2017.03.046. PubMed DOI

Eneh L.K., Saijo H., Borg-Karlson A.-K., Lindh J.M., Rajarao G.K. Cedrol, a malaria mosquito oviposition attractant is produced by fungi isolated from rhizomes of the grass Cyperus rotundus. Malaria J. 2016;15:478. doi: 10.1186/s12936-016-1536-7. PubMed DOI PMC

Jenner K.J., Kreutzer G., Racine P. Persistency assessment and aerobic biodegradation of selected cyclic sesquiterpenes present in essential oils. Environ. Toxicol. Chem. 2011;30:1096–1108. doi: 10.1002/etc.492. PubMed DOI

Su Y.-C., Hsu K.-P., Wang E.I.-C., Ho C.-L. Composition, anticancer, and antimicrobial activities in vitro of the heartwood essential oil of Cunninghamia lanceolata var konishii from Taiwan. Nat. Prod. Commun. 2012;7:1245–1247. doi: 10.1177/1934578X1200700938. PubMed DOI

Behera T., Swain P., Sahoo S.K., Mohapatra D., Das B.K. Immunostimulatory effects of curcumin in fish, Labeo rohita (H.) Ind J. Nat. Prod. Resou. 2011;2:184–188.

Manju M., Akbarsha M.A., Oommen O.V. In vivo protective effect of dietary curcumin in fish Anabas testudineus (Bloch) Fish Physiol. Biochem. 2012;38:309–318. doi: 10.1007/s10695-011-9508-x. PubMed DOI

Cheraghipour K., Marzban A., Ezatpour B., Khanizadeh S., Koshki J. Antiparasitic properties of curcumin: A review. AIMS Agricult. Food. 2018;4:561–578. doi: 10.3934/agrfood.2018.4.561. DOI

Liu Y.-M., Zhang Q.-Z., Xu D.-H., Fu Y.-W., Lin D.-J., Zhou S.-Y., Li J.-P. Antiparasitic efficacy of curcumin from Curcuma longa against Ichthyophthirius multifiliis in grass carp. Vet. Parasitol. 2017;236:128–136. doi: 10.1016/j.vetpar.2017.02.011. PubMed DOI

Mallo N., Defelipe A.-P., Folgueira I., Sueiro R.A., Lamas J., Leiro J.M. Combined antiparasitic and anti-inflammatory effects of the natural polyphenol curcumin on turbot scuticociliatosis. J. Fish Dis. 2016;40:205–217. doi: 10.1111/jfd.12503. PubMed DOI

Taheri Mirghaed A., Hoseini S.M., Ghelichpour M. Effects of dietary 1,8-cineole supplementation on physiological, immunological and antioxidant responses to crowding stress in rainbow trout (Oncorhynchus mykiss) Fish Shellfish. Immunol. 2018;81:182–188. doi: 10.1016/j.fsi.2018.07.027. PubMed DOI

Fazelan Z., Hoseini S.M., Yousefi M., Khalili M., Hoseinifar S.H., Van Doan H. Effects of dietary eucalyptol administration on antioxidant and inflammatory genes in common carp (Cyprinus carpio) exposed to ambient copper. Aquaculture. 2020;520:734988. doi: 10.1016/j.aquaculture.2020.734988. DOI

Ruffinengo S., Maggi M., Faverin C., García de la Rosa S.B., Bailac P., Principal y Martin Eguaras J. Essential oils toxicity related to Varroa destructor and Apis mellifera under laboratory conditions. Zootecnia. Trop. 2007;25:63–69.

Katiki L., Evangelista A., Canova E., Piza A., Fornazari B., Araujo R., Louvandini H., Amarante A., Costa R., Bueno M., et al. Anthelmintic activity of anethole, carvone, carvacrol, thymol, linalool, limonene, eucalyptol, vanillin, cinnamaldehyde and eugenol in in vitro tests. Planta Med. 2014;80:P1L14. doi: 10.1055/s-0034-1394672. DOI

Salifou S., Houngnimassoun H.M.A., Houngbedji Kinhou Y., Dado C.A., Attindehou S., Salifou S. Insecticidal effect of Hyptis suaveolens chemotype 1,8- cineole on lice, poultry parasites. J. Med. Plant Res. 2020 in press.

Ekanem A.P., Brisibe E.A. Effects of ethanol extract of Artemisia annua L. against monogenean parasites of Heterobranchus longifilis. Parasitol. Res. 2010;106:135–1139. doi: 10.1007/s00436-010-1787-0. PubMed DOI

Martins M.L., Moraes F.R., Miyazaki D.M.Y., Brum C.D., Onaka E.M., Fenerick J., Jr., Bozzo F.R. Alternative treatment for Anacanthorus penilabiatus (Monogenea: Dactylogyridae) infection in cultivated pacu Piaractus mesopotamicus (Osteichthyes: Characidae) in Brazil and their haematological effects. Parasite. 2002;9:175–180. doi: 10.1051/parasite/2002092175. PubMed DOI

Yildiz H.Y., Van Q.P., Parisi G., Sao M.D. Anti-parasitic activity of garlic (Allium sativum) and onion (Allium cepa) juice against crustacean parasite, Lernantropus kroyeri, found on European sea bass (Dicentrarchus labrax) Ital. J. Animal. Sci. 2019;18:833–837. doi: 10.1080/1828051X.2019.1593058. DOI

Hyun Kim J., Fridman S., Borochov-Neori H., Sinai T., Zilberg D. Evaluating the use of garlic (Allium sativum) for the remedy of Cryptocaryon irritans in guppies (Poecilia reticulata) Aquac. Res. 2019;50:431–438. doi: 10.1111/are.13904. DOI

Buchmann K., Jensen P.B., Kruse K.D. Effects of sodium percarbonate and garlic extract on Ichthyophthirius multifiliis theronts and tomocysts: In vitro experiments. N. Am. J. Aquac. 2003;65:21–24. doi: 10.1577/1548-8454(2003)065<0021:EOSPAG>2.0.CO;2. DOI

Trasviña-Moreno A.G., Ascencio F., Angulo C., Angulo C., Hutson K.S., Avilés-Quevedo A., Inohuye-Rivera R.B., Pérez-Urbiola J.C. Plant extracts as a natural treatment against the fish ectoparasite Neobenedenia sp. (Monogenea: Capsalidae) J. Helminthol. 2019;3:57–65. doi: 10.1017/S0022149X17001122. PubMed DOI

Villar-Torres M., Raga J.A., Ahuir-Baraja A.E., Montero F.E., Repullés-Albeld A. Preliminary study on the effect of in vitro vegetal treatments against the monogenean Sparicotyle chrysophrii parasite of Sparus aurata; Proceedings of the Congress Aquaculture Europe 2014 Donostia; San Sebastián, Spain. 15–17 October 2014.

Xu H., Lybrand D., Bennewitz S., Tissier A., Last R.L., Pichersky E. Production of trans-chrysanthemic acid, the monoterpene acid moiety of natural pyrethrin insecticides, in tomato fruit. Metab. Eng. 2018;47:271–278. doi: 10.1016/j.ymben.2018.04.004. PubMed DOI PMC

Rabiu H., Subhasish M., Parag G. Investigation of in vitro anthelmintic activity of Cinnamomum camphor leaves. Int. J. Drug Dev. Res. 2011;3:295–300.

Ormad-García A. Master’s Thesis. University of Valencia (Spain); Valencia, Spain: 2018. Transmission and Maintenance of Sparicotyle chrysophrii Infection in Gilthead Sea Bream (Sparus aurata) Using a Recirculating Aquatic System; p. 34.

Ritz C., Baty F., Streibig J.C., Gerhard D. Dose-response analysis using R. PLoS ONE. 2015;10:e0146021. doi: 10.1371/journal.pone.0146021. PubMed DOI PMC

Hothorn T., Bretz F., Westfall P. Simultaneous inference in general parametric models. Biometric J. 2008;50:346–363. doi: 10.1002/bimj.200810425. PubMed DOI

Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. Springer; New York, NY, USA: 2016.

Abbes M., Baati H., Guermazi S., Messina C., Santulli A., Gharsallah N., Ammar E. Biological properties of carotenoids extracted from Halobacterium halobium isolated from a Tunisian solar saltern. BMC Complement Altern. Med. 2013;13:255. doi: 10.1186/1472-6882-13-255. PubMed DOI PMC

Messina C.M., Bono G., Arena R., Randazzo M., Manuguerra S., Santulli A. Polyphenols from halophytes and modified atmosphere packaging improve sensorial and biochemical markers of quality of common dolphinfish (Coryphaena hippurus) fillets. Food Sci. Nutr. 2016;4:723–732. doi: 10.1002/fsn3.337. PubMed DOI PMC

Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI

Berridge M.V., Tan A.S. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): Subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch. Biochem. Biophys. 1993;303:474–482. doi: 10.1006/abbi.1993.1311. PubMed DOI

Denizot F., Lang R. Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods. 1986;89:271–277. doi: 10.1016/0022-1759(86)90368-6. PubMed DOI

Stevens M.G., Kehrli M.E., Canning P.C. A colorimetric assay for quantitating bovine neutrophil bactericidal activity. Vet Immunol. Immunopathol. 1991;28:45–56. doi: 10.1016/0165-2427(91)90042-B. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...