Group Testing for SARS-CoV-2 Allows for Up to 10-Fold Efficiency Increase Across Realistic Scenarios and Testing Strategies
Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
I 3403
Austrian Science Fund FWF - Austria
PubMed
34490172
PubMed Central
PMC8416485
DOI
10.3389/fpubh.2021.583377
Knihovny.cz E-resources
- Keywords
- COVID-19, RT-PCR, SARS-CoV-2, group testing, informative testing, pooling,
- MeSH
- COVID-19 * MeSH
- Humans MeSH
- Pandemics MeSH
- SARS-CoV-2 * MeSH
- COVID-19 Testing MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Brazil MeSH
Background: Due to the ongoing COVID-19 pandemic, demand for diagnostic testing has increased drastically, resulting in shortages of necessary materials to conduct the tests and overwhelming the capacity of testing laboratories. The supply scarcity and capacity limits affect test administration: priority must be given to hospitalized patients and symptomatic individuals, which can prevent the identification of asymptomatic and presymptomatic individuals and hence effective tracking and tracing policies. We describe optimized group testing strategies applicable to SARS-CoV-2 tests in scenarios tailored to the current COVID-19 pandemic and assess significant gains compared to individual testing. Methods: We account for biochemically realistic scenarios in the context of dilution effects on SARS-CoV-2 samples and consider evidence on specificity and sensitivity of PCR-based tests for the novel coronavirus. Because of the current uncertainty and the temporal and spatial changes in the prevalence regime, we provide analysis for several realistic scenarios and propose fast and reliable strategies for massive testing procedures. Key Findings: We find significant efficiency gaps between different group testing strategies in realistic scenarios for SARS-CoV-2 testing, highlighting the need for an informed decision of the pooling protocol depending on estimated prevalence, target specificity, and high- vs. low-risk population. For example, using one of the presented methods, all 1.47 million inhabitants of Munich, Germany, could be tested using only around 141 thousand tests if the infection rate is below 0.4% is assumed. Using 1 million tests, the 6.69 million inhabitants from the city of Rio de Janeiro, Brazil, could be tested as long as the infection rate does not exceed 1%. Moreover, we provide an interactive web application, available at www.grouptexting.com, for visualizing the different strategies and designing pooling schemes according to specific prevalence scenarios and test configurations. Interpretation: Altogether, this work may help provide a basis for an efficient upscaling of current testing procedures, which takes the population heterogeneity into account and is fine-grained towards the desired study populations, e.g., mild/asymptomatic individuals vs. symptomatic ones but also mixtures thereof. Funding: German Science Foundation (DFG), German Federal Ministry of Education and Research (BMBF), Chan Zuckerberg Initiative DAF, and Austrian Science Fund (FWF).
Department of Electrical and Computer Engineering Technical University of Munich Munich Germany
Department of Mathematics Technical University of Munich Garching Germany
Department of Telecommunications Brno University of Technology Brno Czechia
Faculty of Mathematics University of Vienna Vienna Austria
Institute of Computational Biology Helmholtz Zentrum München Munich Germany
Munich Data Science Institute Technical University of Munich Garching Germany
Research Network Data Science University of Vienna Vienna Austria
See more in PubMed
Fraser C, Riley S, Ferguson NM. Factors that make an infectious disease outbreak controllable. Proc Natl Acad Sci USA. (2004) 101:6146–51. 10.1073/pnas.0307506101 PubMed DOI PMC
Dorfman R. The detection of defective members of large populations. Ann Math Statist. (1943) 14:436–40. 10.1214/aoms/1177731363 DOI
Sterrett A. On the detection of defective members of large populations. Ann Math Statist. (1957) 28:1033–6. 10.1214/aoms/1177706807 DOI
Sobel M, Groll PA. Binomial group-testing with an unknown proportion of defectives. Technometrics. (1966) 8:631–56. 10.2307/1266636 DOI
Tebbs JM, McMahan CS, Bilder CR. Two-stage hierarchical group testing for multiple infections with application to the Infertility Prevention Project. Biometrics. (2013) 69:1064–73. 10.1111/biom.12080 PubMed DOI PMC
Hourfar MK, Themann A, Eickmann M, Puthavathana P, Laue T, Seifried E, et al. . Blood screening for influenza. Emerg Infect Dis. (2007) 13:1081–3. 10.3201/eid1307.060861 PubMed DOI PMC
Yelin I, Aharony N, Tamar ES, Argoetti A, Messer E, Berenbaum D, et al. . Evaluation of COVID-19 RT-qPCR test in multi-sample pools. Clin Infect Dis. (2020) 71:2073–78. 10.1093/cid/ciaa531 PubMed DOI PMC
Schmidt M, Hoehl S, Berger A, Zeichhardt H, Hourfar K, Ciesek S, et al. . FACT-Frankfurt adjusted COVID-19 testing- a novel method enables high-throughput SARS-CoV-2 screening without loss of sensitivity. medRxiv [Preprint]. (2020). 10.1101/2020.04.28.20074187 PubMed DOI PMC
Abdalhamid B, Bilder CR, McCutchen EL, Hinrichs SH, Koepsell SA, Iwen PC. Assessment of specimen pooling to conserve SARS CoV-2 testing resources. Am J Clin Pathol. (2020) 153:715–8. 10.1101/2020.04.03.20050195 PubMed DOI PMC
Shani-Narkiss H, David Gilday O, Yayon N, Daniel Landau I. Efficient and practical sample pooling for high-throughput PCR diagnosis of COVID-19. medRxiv [Preprint]. (2020). 10.1101/2020.04.06.20052159 DOI
Mentus C, Romeo M, DiPaola C. Analysis and applications of non-adaptive and adaptive group testing methods for COVID-19. medRxiv [Preprint]. (2020). 10.1101/2020.04.05.20050245 DOI
Sinnott-Armstrong N, Klein D, Hickey B. Evaluation of group testing for SARS-CoV-2 RNA. medRxiv [Preprint]. (2020). 10.1101/2020.03.27.20043968 DOI
Deckert A, Barnighausen T, Kyei N. Pooled-sample analysis strategies for COVID-19 mass testing: a simulation study. Bull World Health Organ. (2020) 98:590. 10.2471/BLT.20.257188 PubMed DOI PMC
Theagarajan LN. Group testing for COVID-19: how to stop worrying and test more. arXiv [Preprint]. arXiv:2004.06306. (2020).
de Wolff T, Pfluger D, Rehme M, Heuer J, Bittner MI. Evaluation of pool-based testing approaches to enable population-wide screening for COVID-19. PLoS ONE. (2020) 15:e0243692. 10.1371/journal.pone.0243692 PubMed DOI PMC
Shental N, Levy S, Skorniakov S, Wuvshet V, Shemer-Avni Y, Porgador A, et al. . Efficient high throughput SARS-CoV-2 testing to detect asymptomatic carriers. medRxiv [Preprint]. (2020). 10.1101/2020.04.14.20064618 PubMed DOI PMC
Bilder CR. Group testing for estimation. In: Balakrishnan N, Colton T, Everitt B, Piegorsch W, Ruggeri F, and Teugels JL, editor. Wiley StatsRef: Statistics Reference Online. John Wiley & Sons (2019). p. 1–11. 10.1002/9781118445112.stat08231 DOI
Hughes-Oliver JM. Pooling experiments for bloodscreening and drug discovery. In: Dean A, Lewis S, editor. Screening. New York, NY: Springer; (2006) 48–68. 10.1007/0-387-28014-6_3 DOI
Malinovsky Y, Albert PS. Revisiting nested group testing procedures: new results, comparisons, and robustness. Am Stat. (2019) 73:117–25. 10.1080/00031305.2017.1366367 PubMed DOI PMC
Orben A, Tomova L, Blakemore SJ. The effects of social deprivation on adolescent development and mental health. Lancet Child AdolescHealth. (2020) 4:634–40. 10.1016/S2352-4642(20)30186-3 PubMed DOI PMC
Lyng GD, Sheils NE, Kennedy CJ, Griffin DO, Berke EM. Identifying optimal COVID-19 testing strategies for schools and businesses: balancing testing frequency, individual test technology, and cost. PLoS ONE. (2021) 16:e0248783. 10.1371/journal.pone.0248783 PubMed DOI PMC
Du DZ, Hwang FK. Combinatorial Group Testing and Its Applications. 2nd ed. Singapore: World Scientific; (2000). 10.1142/4252 DOI
Aldridge M, Johnson O, Scarlett J. Group testing: an information theory perspective. Found Trends Commun Inform Theory. (2019) 15:196–392. 10.1561/0100000099 DOI
Kumar S. Multinomial group-testing. SIAM J Appl Math. (1970) 19:340–50. 10.1137/0119032 DOI
Atia KG, Saligrama V. Boolean compressed sensing and noisy group testing. IEEE Trans Inf Theory. (2012) 58:1880–901. 10.1109/TIT.2011.2178156 DOI
Bryan K, Leise T. Making do with less: an introduction to compressed sensing. SIAM Rev. (2013) 55:547–66. 10.1137/110837681 DOI
Gilbert AC, Iwen MA, Strauss MJ. Group testing and sparse signal recovery. In: 42nd Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA (2009). p. 1059–62. 10.1109/ACSSC.2008.5074574 DOI
Chan CL, Jaggi S, Saligrama V, Agnihotri S. Non-adaptive group testing: explicit bounds and novel algorithms. IEEE Trans Inf Theory. (2014) 60:3019–35. 10.1109/TIT.2014.2310477 DOI
Zaman N, Pippenger N. Asymptotic analysis of optimal nested group-testing procedures. Prob Eng Inform Sci. (2016) 30:547–52. 10.1017/S0269964816000267 DOI
Bilder CR. Group testing for identification. In: Wiley StatsRef: Statistics Reference Online. (2019). p. 1–11. 10.1002/9781118445112.stat08227 DOI
Westreich DJ, Hudgens MG, Fiscus SA, Pilcher CD. Optimizing screening for acute human immunodeficiency virus infection with pooled nucleic acid amplification test. J Clin Microbiol. (2008) 46:1785–92. 10.1128/JCM.00787-07 PubMed DOI PMC
Lu R, Wang J, Li M, Wang Y, Dong J, Cai W. SARS-CoV-2 detection using digital PCR for COVID-19 diagnosis, treatment monitoring and criteria for discharge. medRxiv [Preprint]. (2020). 10.1101/2020.03.24.20042689 DOI
Sheridan C. Coronavirus and the race to distribute reliable diagnostics. Nat Biotechnol. (2019) 38:382–4. 10.1038/d41587-020-00002-2 PubMed DOI
Vogels CBF, Brito AF, Wyllie AL, Fauveret JR, Ott IM, Kalinich CC, et al. . Analytical sensitivity and efficiency comparisons of SARS-COV-2 qRT-PCR assays. Nat Microbiol. (2020) 5:1299–305. 10.1038/s41564-020-0761-6 PubMed DOI PMC
Wein LM, Zenios S. Pooled testing for HIV screening: capturing the dilution effect. Operat Res. (1996) 44:543–69. 10.1287/opre.44.4.543 DOI
Yang Y, Yang M, Shen C, Wang F, Li J, Zhang M, et al. . Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections. Innov. (2020) 1:100061. 10.1101/2020.02.11.20021493 PubMed DOI PMC
Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. (2020) 25:1–8. 10.2807/1560-7917.ES.2020.25.3.2000045 PubMed DOI PMC
Waltz E. Testing the Tests: Which COVID-19 Tests Are Most Accurate? IEEE Spectrum. (2020).
Ransohoff DF, Feinstein AR. Problems of spectrum and bias in evaluating the efficacy of diagnostic tests. N Engl J Med. (1978) 299:926–30. 10.1056/NEJM197810262991705 PubMed DOI
Haber G, Malinovsky Y, Albert PS. Is group testing ready for prime-time in disease identification? arXiv [Preprint]. arXiv:2004.04837. (2020). PubMed PMC
Hitt BD, Bilder CR, Tebbs JM, McMahan CS. The objective function controversy for group testing: much ado about nothing? Stat Med. (2019) 38:4912–23. 10.1002/sim.8341 PubMed DOI PMC
Sobel M, Groll PA. Group testing to eliminate efficiently all defectives in a binomial sample. J Bell System Tech. (1959) 38:1179–252. 10.1002/j.1538-7305.1959.tb03914.x DOI
Shannon CE. A mathematical theory of communication. Bell Syst Tech J. (1948) 27:379–423. 10.1002/j.1538-7305.1948.tb01338.x DOI
Huffman DA. A method for the construction of minimum redundancy codes. Proc IRE. (1952) 40:1098–103. 10.1109/JRPROC.1952.273898 DOI
Ungar P. The cutoff point for group testing. Commun Pure Appl Math. (1960) 13:49–54. 10.1002/cpa.3160130105 DOI
Yao YC, Hwang FK. A fundamental monotonicity in group testing. SIAM J Discrete Math. (1988) 1:256–9. 10.1137/0401026 DOI
Kim HY, Hudgens MG, Dreyfuss JM, Westreich DJ, Pilcher CD. Comparison of group testing algorithms for case identification in the presence of test error. Biometrics. (2007) 63:1152–63. 10.1111/j.1541-0420.2007.00817.x PubMed DOI
Johnson NL, Kotz S, Wu XZ. Inspection Errors for Attributes in Quality Control. London: Chapman and Hall Ltd; (1991).
Phatarfod RM, Sudbury A. The use of a square array scheme in blood testing. Stat Med. (1994) 13:2337–43. 10.1002/sim.4780132205 PubMed DOI
Kim HY, Hudgens MG. Three-dimensional array-based group testing algorithms. Biometrics. (2009) 65:903–10. 10.1111/j.1541-0420.2008.01158.x PubMed DOI PMC
Woodbury CP, Fitzloff JF, Vincent SS. Sample multiplexing for greater throughput in HPLC and related methods. Anal Chem. (1995) 67:885–90. 10.1021/ac00101a015 PubMed DOI
Berger T, Mandell JW, Subrahmanya P. Maximally efficient two-stage screening. Biometrics. (2000) 56:833–40. 10.1111/j.0006-341X.2000.00833.x PubMed DOI
Aldridge M. Individual testing is optimal for nonadaptive group testing in the linear regime. IEEE Trans Inform Theory. (2019) 65:1059–62. 10.1109/TIT.2018.2873136 DOI
Nebenzahl E, Sobel M. Finite and infinite models for generalized group-testing with unequal probabilities of success for each item. In: Cacoullos T, editor. Discriminant Analysis and Applications. New York, NY: Academic Press Inc. (1973). p. 239–84.
Hwang FK. A generalized binomial group testing problem. J Am Stat Assoc. (1975) 70:923–6. 10.1080/01621459.1975.10480324 DOI
Bilder CR, Tebbs J, Chen P. Informative retesting. J Am Stat Assoc. (2010) 105:942–55. 10.1198/jasa.2010.ap09231 PubMed DOI PMC
McMahan C, Tebbs J, Bilder CR. Informative Dorfman screening. Biometrics. (2012) 68:287–96. 10.1111/j.1541-0420.2011.01644.x PubMed DOI PMC
McMahan C, Tebbs J, Bilder CR. Two-dimensional informative array testing. Biometrics. (2012) 68:793–804. 10.1111/j.1541-0420.2011.01726.x PubMed DOI PMC
Black MS, Bilder CR, Tebbs JM. Optimal retesting configurations for hierarchical group testing. J R Stat Soc Ser C. (2015) 64:693–710. 10.1111/rssc.12097 PubMed DOI PMC
Bilder CR, Tebbs JM. Pooled-testing procedures for screening high volume clinical specimens in heterogeneous populations. Stat Med. (2012) 31:3261–8. 10.1002/sim.5334 PubMed DOI PMC
Bilder CR, Zahng B, Schaarschmidt F, Tebbs JM. binGroup: a package for group testing. R J. (2010) 2:56–60. 10.32614/RJ-2010-016 PubMed DOI PMC
FIND Evaluaion Update: SARS-CoV-2 Molecular Diagnostics, Foundation for Innovative New Diagnostics. Available online at: https://www.finddx.org/covid-19/sarscov2-eval-molecular/ (accessed April 28, 2020).
Nguyen NT, Aprahamian H, Bish EK, Bish DR. A methodology for deriving the sensitivity of pooled testing, based on viral load progression and pooling dilution. J Transl Med. (2019) 17:49–54. 10.1186/s12967-019-1992-2 PubMed DOI PMC
Lohse S, Pfuhl T, Berkó-Göttel B, Rissland J, Geißler T, Gärtner B, et al. . Pooling of samples for testing for SARS-CoV-2 in asymptomatic people. Lancet Infect Dis. (2020) 20:1231–2. 10.1016/S1473-3099(20)30362-5 PubMed DOI PMC
Zhang J, Litvinova M, Wang W, Wang Y, Deng X, Chen X, et al. . Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei province, China: a descriptive and modelling study. Lancet Infect Dis. (2020) 20:793–802. 10.1016/S1473-3099(20)30230-9 PubMed DOI PMC
Baggett TP, Keyes H, Sporn N M, Gaeta J. COVID-19 outbreak at a large homeless shelter in Boston: Implications for universal testing. medRxiv [Preprint]. (2020) 10.1101/2020.04.12.20059618 PubMed DOI
Black JRM, Bailey C, Przewrocka J, Dijkstra KK, Swanton C. COVID-19: the case for health-care worker screening to prevent hospital transmission. Lancet. (2020) 395:1418–20. 10.1016/S0140-6736(20)30917-X PubMed DOI PMC
Barak N, Ben-Ami R, Sido T, Perri A, Shtoyer A, Rivkin M, et al. . Lessons from applied large-scale pooling of 133,816 SARS-CoV-2 RT-PCR tests. Sci. Transl. Med. (2021) 13. 10.1101/2020.10.16.20213405 PubMed DOI PMC
Tan JG, Omar A, Lee WB, Wong MS. Considerations for group testing: a practical approach for the clinical laboratory. Clin Biochem Rev. (2020) 41:79. 10.33176/AACB-20-00007 PubMed DOI PMC
Chu DKW, Pan Y, Cheng SMS, P Y, Hui K, Krishnan P, Liu Y, et al. . Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin Chem. (2020) 66:549–55. 10.1093/clinchem/hvaa029 PubMed DOI PMC
Kontou PI, Braliou GG, Dimou NL, Nikolopoulos G, Bagos PG. Antibody tests in detecting SARS-CoV-2 infection: a meta-analysis. Diagnostics. (2020) 10:319. 10.3390/diagnostics10050319 PubMed DOI PMC
GeurtsvanKessel CH, Okba NMA, Igloi Z, Bogers S, Embregts CWE, Laksono BM, et al. . An evaluation of COVID-19 serological assays informs future diagnostics and exposure assessment. Nat Commun. (2020). 11:3436. 10.1038/s41467-020-17317-y PubMed DOI PMC
Malinovsky Y, Zacks S. Proportional closeness estimation of probability of contamination under group testing. Sequential Anal. (2018) 37:145–57. 10.1080/07474946.2018.1466518 DOI
Verdun CM, Fuchs T, Harar P, Elbrächter D, Fischer DS, Berner J, et al. . Group testing for SARS-CoV-2 allows for up to 10-fold efficiency increase across realistic scenarios and testing strategies. medRxiv [Preprint]. (2020). 10.1101/2020.04.30.20085290 PubMed DOI PMC