• This record comes from PubMed

Validating atlas-based lesion disconnectomics in multiple sclerosis: A retrospective multi-centric study

. 2021 ; 32 () : 102817. [epub] 20210902

Language English Country Netherlands Media print-electronic

Document type Journal Article, Multicenter Study, Research Support, Non-U.S. Gov't

Links

PubMed 34500427
PubMed Central PMC8429972
DOI 10.1016/j.nicl.2021.102817
PII: S2213-1582(21)00261-8
Knihovny.cz E-resources

The translational potential of MR-based connectivity modelling is limited by the need for advanced diffusion imaging, which is not part of clinical protocols for many diseases. In addition, where diffusion data is available, brain connectivity analyses rely on tractography algorithms which imply two major limitations. First, tracking algorithms are known to be sensitive to the presence of white matter lesions and therefore leading to interpretation pitfalls and poor inter-subject comparability in clinical applications such as multiple sclerosis. Second, tractography quality is highly dependent on the acquisition parameters of diffusion sequences, leading to a trade-off between acquisition time and tractography precision. Here, we propose an atlas-based approach to study the interplay between structural disconnectivity and lesions without requiring individual diffusion imaging. In a multi-centric setting involving three distinct multiple sclerosis datasets (containing both 1.5 T and 3 T data), we compare our atlas-based structural disconnectome computation pipeline to disconnectomes extracted from individual tractography and explore its clinical utility for reducing the gap between radiological findings and clinical symptoms in multiple sclerosis. Results using topological graph properties showed that overall, our atlas-based disconnectomes were suitable approximations of individual disconnectomes from diffusion imaging. Small-worldness was found to decrease for larger total lesion volumes thereby suggesting a loss of efficiency in brain connectivity of MS patients. Finally, the global efficiency of the created brain graph, combined with total lesion volume, allowed to stratify patients into subgroups with different clinical scores in all three cohorts.

See more in PubMed

Aerts H., Fias W., Caeyenberghs K., Marinazzo D. Brain networks under attack: robustness properties and the impact of lesions. Brain. 2016;139(12):3063–3083. doi: 10.1093/brain/aww194. PubMed DOI

Barkhof F. The clinico-radiological paradox in multiple sclerosis revisited. Curr. Opin. Neurol. 2002;15(3):239–245. doi: 10.1097/00019052-200206000-00003. PubMed DOI

Bassett D.S., Sporns O. Network neuroscience. Nat. Neurosci. 2017;20(3):353–364. doi: 10.1038/nn.4502. PubMed DOI PMC

Bates E., Wilson S.M., Saygin A.P., Dick F., Sereno M.I., Knight R.T., Dronkers N.F. Voxel-based lesion-symptom mapping. Nat. Neurosci. 2003;6(5):448–450. doi: 10.1038/nn1050. PubMed DOI

Brandes Ulrik. A faster algorithm for betweenness centrality. J. Math. Sociol. 2001

Buckner R.L., Krienen F.M., Castellanos A., Diaz J.C., Yeo B.T.T. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–2345. doi: 10.1152/jn.00339.2011. PubMed DOI PMC

Bullmore E.T., Bassett D.S. Brain Graphs: Graphical Models of the Human Brain Connectome. Ann. Rev. Clin. Psychol. 2011;7(1):113–140. doi: 10.1146/annurev-clinpsy-040510-143934. PubMed DOI

Butzkueven H., Chapman J., Cristiano E., Grand’Maison F., Hoffmann M., Izquierdo G., Jolley D., Kappos L., Leist T., Pöhlau D., Rivera V., Trojano M., Verheul F., Malkowski J.-P. MSBase: An international, online registry and platform for collaborative outcomes research in multiple sclerosis. Multiple Sclerosis. 2006;12(6):769–774. doi: 10.1177/1352458506070775. PubMed DOI

Calabrese E., Badea A., Coe C.L., Lubach G.R., Styner M.A., Johnson G.A. Investigating the tradeoffs between spatial resolution and diffusion sampling for brain mapping with diffusion tractography: time well spent? Hum. Brain Mapp. 2014;35(11):5667–5685. doi: 10.1002/hbm.22578. PubMed DOI PMC

Carrera E., Tononi G. Diaschisis: past, present, future. Brain. 2014;137:2408–2422. doi: 10.1093/brain/awu101. PubMed DOI

Catani M., Dell'Acqua F., Bizzi A., Forkel S.J., Williams S.C., Simmons A., Murphy D.G., Thiebaut de Schotten M. Beyond cortical localization in clinico-anatomical correlation. Cortex. 2012;48(10):1262–1287. doi: 10.1016/j.cortex.2012.07.001. PubMed DOI

Catani M., Ffytche D.H. The rises and falls of disconnection syndromes. Brain. 2005;128:2224–2239. doi: 10.1093/brain/awh622. PubMed DOI

Chow L.S., Paramesran R. Review of medical image quality assessment. Biomed. Signal Process. Control. 2016;27:145–154. doi: 10.1016/j.bspc.2016.02.006. DOI

Ciccarelli O., Catani M., Johansen-Berg H., Clark C., Thompson A. Diffusion-based tractography in neurological disorders: concepts, applications, and future developments. The Lancet Neurology. 2008;7(8):715–727. doi: 10.1016/S1474-4422(08)70163-7. PubMed DOI

Connors J., Krzywinski M., Schein J., Gascoyne R., Horsman D., Jones S.J., Marra M.A. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639–1645. doi: 10.1101/gr.092759.109.19. PubMed DOI PMC

De Vico Fallani F., Richiardi J., Chavez M., Achard S. Graph analysis of functional brain networks: practical issues in translational neuroscience. Philos. Trans. Royal Soc. B. 2014;369(1653):20130521. doi: 10.1098/rstb.2013.0521. PubMed DOI PMC

Dijkstra E.W. A note on two probles in connexion with graphs. Numer. Math. 1959

Donahue C.J., Sotiropoulos S.N., Jbabdi S., Hernandez-Fernandez M., Behrens T.E., Dyrby T.B., Coalson T., Kennedy H., Knoblauch K., Van Essen D.C., Glasser M.F. Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the monkey. J. Neurosci. 2016;36(25):6758–6770. doi: 10.1523/JNEUROSCI.0493-16.2016. PubMed DOI PMC

Dziedzic T., Metz I., Dallenga T., König F.B., Müller S., Stadelmann C., Brück W. Wallerian degeneration: a major component of early axonal pathology in multiple sclerosis. Brain Pathol. 2010;20:976–985. doi: 10.1111/j.1750-3639.2010.00401.x. PubMed DOI PMC

Faivre A., Robinet E., Guye M., Rousseau C., Maarouf A., Le Troter A., Zaaraoui W., Rico A., Crespy L., Soulier E., Confort-Gouny S., Pelletier J., Achard S., Ranjeva J.-P., Audoin B. Depletion of brain functional connectivity enhancement leads to disability progression in multiple sclerosis: a longitudinal resting-state fMRI study. Multiple Sclerosis. 2016;22(13):1695–1708. doi: 10.1177/1352458516628657. PubMed DOI

Fan L., Li H., Zhuo J., Zhang Y., Wang J., Chen L., Yang Z., Chu C., Xie S., Laird A.R., Fox P.T., Eickhoff S.B., Yu C., Jiang T. The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb. Cortex. 2016;26(8):3508–3526. doi: 10.1093/cercor/bhw157. PubMed DOI PMC

Fartaria M.J., Bonnier G., Roche A., Kober T., Meuli R., Rotzinger D., Frackowiak R., Schluep M., Du Pasquier R., Thiran J.-P., Krueger G., Bach Cuadra M., Granziera C. Automated detection of white matter and cortical lesions in early stages of multiple sclerosis. J. Magn. Reson. Imaging. 2016;43(6):1445–1454. doi: 10.1002/jmri.25095. PubMed DOI

Fartaria M.J., Roche A., Meuli R., Granziera C., Kober T., Bach Cuadra M. Segmentation of cortical and subcortical multiple sclerosis lesions based on constrained partial. MICCAI LCNS. 2017;10435:516–524. doi: 10.1007/978-3-319-66179-7. DOI

Fleischer V., Radetz A., Ciolac D., Muthuraman M., Gonzalez-escamilla G. Graph Theoretical Framework of Brain Networks in Multiple Sclerosis: A Review of Concepts. Neuroscience. 2019;403:35–53. doi: 10.1016/j.neuroscience.2017.10.033. PubMed DOI

Foulon C., Cerliani L., Kinkingnéhun S., Levy R., Rosso C., Urbanski M., Volle E., de Schotten M.T. Advanced lesion symptom mapping analyses and implementation as BCBtoolkit. GigaScience. 2018;7:1–17. doi: 10.1093/gigascience/giy004. PubMed DOI PMC

Fox M.D. Mapping Symptoms to Brain Networks with the Human Connectome. The New England Journal of Medicine. 2018;379(23):2237–2245. doi: 10.1056/NEJMra1706158. PubMed DOI

Griffis J.C., Metcalf N.V., Corbetta M., Shulman G.L. Lesion Quantification Toolkit: A MATLAB software tool for estimating grey matter damage and white matter disconnections in patients with focal brain lesions. NeuroImage: Clinical. 2021;30:102639. doi: 10.1016/j.nicl.2021.102639. PubMed DOI PMC

Hagberg, A.A., Schult, D.A., Swart, P.J., 2008. Exploring network structure, dynamics, and function using NetworkX. 7th Python in Science Conference (SciPy 2008) 11–15.

Hayes C.E., Ntambi J.M. Multiple Sclerosis: Lipids, Lymphocytes, and Vitamin D. Immunometabolism. 2020:1–54. doi: 10.20900/immunometab20200019. PubMed DOI PMC

Horakova D., Zivadinov R., Weinstock-Guttman B., Havrdova E., Qu J., Tamaño-Blanco M., Badgett D., Tyblova M., Bergsland N., Hussein S., Willis L., Krasensky J., Vaneckova M., Seidl Z., Lelkova P., Dwyer M.G., Zhang M., Yu H., Duan X., Kalincik T., Ramanathan M., Fujinami R.S. Environmental Factors Associated with Disease Progression after the First Demyelinating Event: Results from the Multi-Center SET Study. PLoS ONE. 2013;8(1):1–8. doi: 10.1371/journal.pone.0053996. PubMed DOI PMC

Horn T., Sherwood J., Remien R.H., Nash D., Auerbach J.D. Towards an integrated primary and secondary HIV prevention continuum for the United States: A cyclical process model. J. Int. AIDS Soc. 2016;19(1):21263. doi: 10.7448/IAS.19.1.21263. PubMed DOI PMC

Jones D.K., Knösche T.R., Turner R. White matter integrity, fiber count, and other fallacies: The do’s and don’ts of diffusion MRI. NeuroImage. 2013;73:239–254. doi: 10.1016/j.neuroimage.2012.06.081. PubMed DOI

Klein S., Staring M., Murphy K., Viergever M., a., Pluim, J., elastix: A Toolbox for Intensity-Based Medical Image Registration. IEEE Trans. Med. Imaging. 2010;29:196–205. doi: 10.1109/TMI.2009.2035616. PubMed DOI

Kuceyeski A.F., Vargas W., Dayan M., Monohan E., Blackwell C., Raj A., Fujimoto K., Gauthier S.A. Modeling the relationship among gray matter atrophy, abnormalities in connecting white matter, and cognitive performance in early multiple sclerosis. Am. J. Neuroradiol. 2015;36(4):702–709. doi: 10.3174/ajnr.A4165. PubMed DOI PMC

Latora Vito. Efficient behavior of small-world networks. Phys. Rev. Lett. 2001 PubMed

Lin X., Tench C.R., Morgan P.S., Niepel G., Constantinescu C.S. “Importance sampling” in MS: Use of diffusion tensor tractography to quantify pathology related to specific impairment. J. Neurol. Sci. 2005;237(1-2):13–19. doi: 10.1016/j.jns.2005.04.019. PubMed DOI

Lipp I., Parker G.D., Tallantyre E.C., Goodall A., Grama S., Patitucci E., Heveron P., Tomassini V., Jones D.K. Tractography in the presence of multiple sclerosis lesions. NeuroImage. 2020;209:116471. doi: 10.1016/j.neuroimage.2019.116471. PubMed DOI PMC

Llufriu S., Martinez-Heras E., Solana E., Sola-Valls N., Sepulveda M., Blanco Y., Martinez-Lapiscina E.H., Andorra M., Villoslada P., Prats-Galino A., Saiz A. Structural networks involved in attention and executive functions in multiple sclerosis. NeuroImage: Clinical. 2017;13:288–296. doi: 10.1016/j.nicl.2016.11.026. PubMed DOI PMC

Lucchinetti C., Brück W., Parisi J., Scheithauer B., Rodriguez M., Lassmann H. Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination. Ann. Neurol. 2000;47:707–717. doi: 10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-Q. PubMed DOI

Meskaldji D.E., Fischi-Gomez E., Griffa A., Hagmann P., Morgenthaler S., Thiran J.P. Comparing connectomes across subjects and populations at different scales. Neuroimage. 2013;80:416–425. doi: 10.1016/j.neuroimage.2013.04.084. PubMed DOI

Muthuraman M., Fleischer V., Kolber P., Luessi F., Zipp F., Groppa S. Structural brain network characteristics can differentiate CIS from early RRMS. Front. Neurosci. 2016;10:1–12. doi: 10.3389/fnins.2016.00014. PubMed DOI PMC

Pawlitzki M., Neumann J., Kaufmann J., Heidel J., Stadler E., Sweeney-Reed C., Sailer M., Schreiber S. Loss of corticospinal tract integrity in early MS disease stages. Neurology: Neuroimmunology and NeuroInflammation. 2017;4(6):e399. doi: 10.1212/NXI.0000000000000399. PubMed DOI PMC

Ravano, V., Andelova, M., Fouad, M., Mahdi, A.-W., Meuli, R., Uher, T., Krasensky, J., Vaneckova, M., Horakova, D., Kober, T., Richiardi, J., 2020. Automated atlas-based mapping of white matter tract damage to multiple sclerosis symptoms, in: Proceedings of the International Society of Magnetic Resonance in Medicine. p. 1391.

Ravano V., Andelova, Michaela Mahdi M.-F.-A.-W., Meuli R., Uher T., Krasensky J., Vaneckova M., Horakova D., Kober T., Richiardi J. Atlas-based tract damage mapping improves 4-year forecast of EDSS in multiple sclerosis. Multiple Sclerosis Journal. 2019;25:182–183.

Reich D.S., Smith S.A., Zackowski K.M., Gordon-Lipkin E.M., Jones C.K., Farrell J.A.D., Mori S., van Zijl P.C.M., Calabresi P.A. Multiparametric magnetic resonance imaging analysis of the corticospinal tract in multiple sclerosis. NeuroImage. 2007;38(2):271–279. doi: 10.1016/j.neuroimage.2007.07.049. PubMed DOI PMC

Richiardi J., Achard S., Bunke H., Ville D.V., De, Machine Learning with Brain Graphs. IEEE Signal Process Mag. 2013;30:58–70. doi: 10.1109/MSP.2012.2233865. DOI

Rocca M.A., Amato M.P., De Stefano N., Enzinger C., Geurts J.J., Penner I.-K., Rovira A., Sumowski J.F., Valsasina P., Filippi M. Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. The Lancet Neurology. 2015;14(3):302–317. doi: 10.1016/S1474-4422(14)70250-9. PubMed DOI

Rocca M.A., Valsasina P., Meani A., Falini A., Comi G., Filippi M. Impaired functional integration in multiple sclerosis: a graph theory study. Brain Struct. Funct. 2016;221(1):115–131. doi: 10.1007/s00429-014-0896-4. PubMed DOI

Saramäki Jari. Generalizations of the clustering coefficient to weighted complex networks Jari. Phys. Rev. 2007 PubMed

Schmitter D., Roche A., Maréchal B., Ribes D., Abdulkadir A., Bach-Cuadra M., Daducci A., Granziera C., Klöppel S., Maeder P., Meuli R., Krueger G. An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer’s disease. NeuroImage: Clinical. 2015;7:7–17. doi: 10.1016/j.nicl.2014.11.001. PubMed DOI PMC

Shu N., Duan Y., Xia M., Schoonheim M.M., Huang J., Ren Z., Sun Z., Ye J., Dong H., Shi F.D., Barkhof F., Li K., Liu Y. Disrupted topological organization of structural and functional brain connectomes in clinically isolated syndrome and multiple sclerosis. Sci. Rep. 2016;6:1–11. doi: 10.1038/srep29383. PubMed DOI PMC

Shu N., Liu Y., Li K., Duan Y., Wang J., Yu C., Dong H., Ye J., He Y. Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural networks in multiple sclerosis. Cereb. Cortex. 2011;21:2565–2577. doi: 10.1093/cercor/bhr039. PubMed DOI

Simioni S., Amarù F., Bonnier G., Kober T., Rotzinger D., Du Pasquier R., Schluep M., Meuli R., Sbarbati A., Thiran J.-P., Krueger G., Granziera C. MP2RAGE provides new clinically-compatible correlates of mild cognitive deficits in relapsing-remitting multiple sclerosis. J. Neurol. 2014;261(8):1606–1613. doi: 10.1007/s00415-014-7398-4. PubMed DOI

Solana E., Martinez-Heras E., Martinez-Lapiscina E.H., Sepulveda M., Sola-Valls N., Bargalló N., Berenguer J., Blanco Y., Andorra M., Pulido-Valdeolivas I., Zubizarreta I., Saiz A., Llufriu S. Magnetic resonance markers of tissue damage related to connectivity disruption in multiple sclerosis. NeuroImage: Clinical. 2018;20:161–168. doi: 10.1016/j.nicl.2018.07.012. PubMed DOI PMC

Sporns O., Tononi G., Kötter R. The human connectome: A structural description of the human brain. PLoS Comput. Biol. 2005;1:0245–0251. doi: 10.1371/journal.pcbi.0010042. PubMed DOI PMC

Tievsky A.L., Ptak T., Farkas J. Investigation of apparent diffusion coefficient and diffusion tensor anisotropy in acute and chronic multiple sclerosis lesions. American Journal of Neuroradiology. 1999;20:1491–1499. PubMed PMC

Truyen L., van Waesberghe J.H.T.M., van Walderveen M.A.A., van Oosten B.W., Polman C.H., Hommes O.R., Ader H.J.A., Barkhof F. Accumulation of hypointense lesions ('black holes’) on T1 spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology. 1996;47(6):1469–1476. PubMed

Van Essen D.C., Ugurbil K., Auerbach E., Barch D., Behrens T.E.J., Bucholz, R., Chang A., Chen L., Corbetta M., Curtiss S.W., Della Penna S., Feinberg D., Glasser M.F., Harel N., Heathj A.C., Larson-Prior L., Marcus D., Michalareas G., Moeller S., Oostenveld R., Petersen S.E., Prior F., Schlaggar B.L., Smith S.M., Snyder A.Z., Xu J., Yacoub E., Consortium W.-M.H. The Human Connectome Project: A data acquisition perspective. NeuroImage. 2012;62:2222–2231. doi: 10.1115/JRC2014-3865. PubMed DOI PMC

Vespignani The architecture of complex weighted networks. PNAS. 2004 PubMed PMC

Wasserman Stanley. Social Network Analysis: Methods and Applications. Cambridge University Press; 1994.

Yan C., Gong G., Wang J., Wang D., Liu D., Zhu C., Chen Z.J., Evans A., Zang Y., He Y. Sex- and brain size-related small-world structural cortical networks in young adults: A DTI tractography study. Cereb. Cortex. 2011;21:449–458. doi: 10.1093/cercor/bhq111. PubMed DOI

Yaou L., Hao W., Yunyun D., Jing H., Zhuoqiong R., Jing Y., Huiqing D., Fudong S., Kuncheng L., Jinhui W. Functional Brain Network Alterations in Clinically Isolated Syndrome and Multiple Sclerosis: A Graph-based Connectome Study. Radiology. 2017;282(2):534–541. doi: 10.1148/radiol.2016152843. PubMed DOI

Yeh F.C., Panesar S., Fernandes D., Meola A., Yoshino M., Fernandez-Miranda J.C., Vettel J.M., Verstynen T. Population-averaged atlas of the macroscale human structural connectome and its network topology. NeuroImage. 2018;178:57–68. doi: 10.1016/j.neuroimage.2018.05.027. PubMed DOI PMC

Yeh F.-C., Tseng W.-Y. NTU-90: A high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. NeuroImage. 2011;58(1):91–99. doi: 10.1016/j.neuroimage.2011.06.021. PubMed DOI

Zaykin D.V. Optimally weighted Z-test is a powerful method for combining probabilities in meta-analysis. J. Evol. Biol. 2011;24:1836–1841. doi: 10.1111/j.1420-9101.2011.02297.x. PubMed DOI PMC

See more in PubMed

ClinicalTrials.gov
NCT01592474

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...