Tract-wise microstructural analysis informs on current and future disability in early multiple sclerosis

. 2024 Feb ; 271 (2) : 631-641. [epub] 20231011

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37819462

Grantová podpora
NTC03706118 Roche
NU 22-04-00193 Czech Ministry of Health
Project Cooperation LF1 - reasearch area Neuroscience Czech Ministry of Education
RVO VFN 64165 Charles University and General University Hospital in Prague

Odkazy

PubMed 37819462
PubMed Central PMC10827809
DOI 10.1007/s00415-023-12023-3
PII: 10.1007/s00415-023-12023-3
Knihovny.cz E-zdroje

OBJECTIVES: Microstructural characterization of patients with multiple sclerosis (MS) has been shown to correlate better with disability compared to conventional radiological biomarkers. Quantitative MRI provides effective means to characterize microstructural brain tissue changes both in lesions and normal-appearing brain tissue. However, the impact of the location of microstructural alterations in terms of neuronal pathways has not been thoroughly explored so far. Here, we study the extent and the location of tissue changes probed using quantitative MRI along white matter (WM) tracts extracted from a connectivity atlas. METHODS: We quantified voxel-wise T1 tissue alterations compared to normative values in a cohort of 99 MS patients. For each WM tract, we extracted metrics reflecting tissue alterations both in lesions and normal-appearing WM and correlated these with cross-sectional disability and disability evolution after 2 years. RESULTS: In early MS patients, T1 alterations in normal-appearing WM correlated better with disability evolution compared to cross-sectional disability. Further, the presence of lesions in supratentorial tracts was more strongly associated with cross-sectional disability, while microstructural alterations in infratentorial pathways yielded higher correlations with disability evolution. In progressive patients, all major WM pathways contributed similarly to explaining disability, and correlations with disability evolution were generally poor. CONCLUSIONS: We showed that microstructural changes evaluated in specific WM pathways contribute to explaining future disability in early MS, hence highlighting the potential of tract-wise analyses in monitoring disease progression. Further, the proposed technique allows to estimate WM tract-specific microstructural characteristics in clinically compatible acquisition times, without the need for advanced diffusion imaging.

Zobrazit více v PubMed

Tranfa M, Pontillo G, Petracca M, et al. Quantitative MRI in multiple sclerosis: from theory to application. Am J Neuroradiol. 2022;43(12):1688–1695. doi: 10.3174/ajnr.A7536. PubMed DOI

Granziera C, Wuerfel J, Barkhof F, et al. Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis. Brain. 2021;144:1296–1311. doi: 10.1093/brain/awab029. PubMed DOI PMC

Jonkman LE, Soriano AL, Amor S, et al. Can MS lesion stages be distinguished with MRI? A postmortem MRI and histopathology study. J Neurol. 2015;262:1074–1080. doi: 10.1007/s00415-015-7689-4. PubMed DOI PMC

Mottershead JP, Schmierer K, Clemence M, et al. High field MRI correlates of myelin content and axonal density in multiple sclerosis: a post-mortem study of the spinal cord. J Neurol. 2003;250:1293–1301. doi: 10.1007/s00415-003-0192-3. PubMed DOI

Thaler C, Faizy T, Sedlacik J, et al. T1-thresholds in black holes increase clinical–radiological correlation in multiple sclerosis patients. PLoS ONE. 2015;10:1–13. doi: 10.1371/journal.pone.0144693. PubMed DOI PMC

Thaler C, Faizy TD, Sedlacik J, et al. T1 recovery is predominantly found in black holes and is associated with clinical improvement in patients with multiple sclerosis. Am J Neuroradiol. 2017;38:264–269. doi: 10.3174/ajnr.A5004. PubMed DOI PMC

Vrenken H, Geurts JJG, Knol DL, et al. Whole-brain T1 mapping in multiple sclerosis: global changes of normal-appearing gray and white matter. Radiology. 2006;240:811–820. doi: 10.1148/radiol.2403050569. PubMed DOI

Manfredonia F, Ciccarelli O, Khaleeli Z, et al. Normal-appearing brain T1 relaxation time predicts disability in early primary progressive multiple sclerosis. Arch Neurol. 2007;64:411–415. doi: 10.1001/archneur.64.3.411. PubMed DOI

Vaneckova M, Piredda GF, Andelova M, et al. Periventricular gradient of T1 tissue alterations in multiple sclerosis. Neuroimage Clin. 2022;34:1–10. doi: 10.1016/j.nicl.2022.103009. PubMed DOI PMC

Vellinga MM, Geurts JJG, Rostrup E, et al. Clinical correlations of brain lesion distribution in multiple sclerosis. J Magn Reson Imaging. 2009;29:768–773. doi: 10.1002/jmri.21679. PubMed DOI

Foulon C, Cerliani L, Kinkingnéhun S, et al. Advanced lesion symptom mapping analyses and implementation as BCBtoolkit. Gigascience. 2018;7:1–17. doi: 10.1093/gigascience/giy004. PubMed DOI PMC

Fox M. Mapping symptoms to brain networks with the human connectome. N Engl J Med. 2018;379:2237–2245. doi: 10.1056/NEJMra1706158. PubMed DOI

Rise HH, Brune S, Chien C, et al. Brain disconnectome mapping derived from white matter lesions and serum neurofilament light levels in multiple sclerosis: a longitudinal multicenter study. Neuroimage (Amst) 2022 doi: 10.1016/j.nicl.2022.103099. PubMed DOI PMC

Ravano V, Andelova M, Fartaria MJ, et al. Validating atlas-based lesion disconnectomics in multiple sclerosis: a retrospective multi-centric study. Neuroimage Clin. 2021;32:102817. doi: 10.1016/j.nicl.2021.102817. PubMed DOI PMC

Hulst HE, Steenwijk MD, Versteeg A, et al. Cognitive impairment in MS: impact of white matter integrity, gray matter volume, and lesions. Neurology. 2013;80:1025–1032. doi: 10.1212/WNL.0b013e31828726cc. PubMed DOI

Droby A, Fleischer V, Carnini M, et al. The impact of isolated lesions on white-matter fiber tracts in multiple sclerosis patients. Neuroimage Clin. 2015;8:110–116. doi: 10.1016/j.nicl.2015.03.003. PubMed DOI PMC

Valk J, van der Knaap MS. Magnetic resonance of myelin, myelination, and myelin disorders. Berlin: Springer; 1989. Wallerian degeneration and demyelination secondary to neuronal and axonal degeneration; pp. 319–326.

Filippi M, Rocca MA. MRI evidence for multiple sclerosis as a diffuse disease of the central nervous system. J Neurol. 2005;252:v16–v24. doi: 10.1007/s00415-005-5004-5. PubMed DOI

Dziedzic T, Metz I, Dallenga T, et al. Wallerian degeneration: a major component of early axonal pathology in multiple sclerosis. Brain Pathol. 2010;20:976–985. doi: 10.1111/j.1750-3639.2010.00401.x. PubMed DOI PMC

Singh S, Dallenga T, Winkler A, et al. Relationship of acute axonal damage, Wallerian degeneration, and clinical disability in multiple sclerosis. J Neuroinflamm. 2017;14:1–15. doi: 10.1186/s12974-017-0831-8. PubMed DOI PMC

Vaithianathar L, Tench CR, Morgan PS, et al. T1 relaxation time mapping of white matter tracts in multiple sclerosis defined by diffusion tensor imaging. J Neurol. 2002;249:1272–1278. doi: 10.1007/s00415-002-0836-8. PubMed DOI

Marques JP, Kober T, Krueger G, et al. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage. 2010;49:1271–1281. doi: 10.1016/j.neuroimage.2009.10.002. PubMed DOI

Mussard E, Hilbert T, Forman C, et al. Accelerated MP2RAGE imaging using Cartesian phyllotaxis readout and compressed sensing reconstruction. Magn Reson Med. 2020;84:1881–1894. doi: 10.1002/mrm.28244. PubMed DOI

Kurtzke JF. Rating neurologic impairment in multiple sclerosis : an expanded disability status scale (EDSS) Neurology. 1983;33(11):1444–1453. doi: 10.1212/wnl.33.11.1444. PubMed DOI

Fartaria MJ, Roche A, Meuli R, et al. Segmentation of cortical and subcortical multiple sclerosis lesions based on constrained partial. MICCAI LCNS. 2017;10435:516–524. doi: 10.1007/978-3-319-66179-7. DOI

Fartaria MJ, Bonnier G, Roche A, et al. Automated detection of white matter and cortical lesions in early stages of multiple sclerosis. J Magn Reson Imaging. 2016;43:1445–1454. doi: 10.1002/jmri.25095. PubMed DOI

Klein S, Staring M, Murphy K, et al. elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging. 2010;29:196–205. doi: 10.1109/TMI.2009.2035616. PubMed DOI

Schmitter D, Roche A, Maréchal B, et al. An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer’s disease. Neuroimage Clin. 2015;7:7–17. doi: 10.1016/j.nicl.2014.11.001. PubMed DOI PMC

Piredda GF, Hilbert T, Granziera C, et al. Quantitative brain relaxation atlases for personalized detection and characterization of brain pathology. Magn Reson Med. 2020;83:337–351. doi: 10.1002/mrm.27927. PubMed DOI

Avants BB, Tustison NJ, Song G, et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage. 2011;54:2033–2044. doi: 10.1016/j.neuroimage.2010.09.025. PubMed DOI PMC

Yeh FC, Panesar S, Fernandes D, et al. Population-averaged atlas of the macroscale human structural connectome and its network topology. Neuroimage. 2018;178:57–68. doi: 10.1016/j.neuroimage.2018.05.027. PubMed DOI PMC

RStudio Team . RStudio: integrated development for R. Boston: RStudio Inc.; 2020.

Piredda GF, Radojewski P, Bonanno G et al (2022) High-resolution T1 atlas for subject-specific abnormality detection at 7T. In: Proc Int Soc Magn Reson Med London, UK Abstract: 1268. 10.1002/mrm.29540

Minneboo A, Barkhof F, Polman CH, et al. Infratentorial lesions predict long-term disability in patients with initial findings suggestive of multiple sclerosis. Arch Neurol. 2004;61:217–221. doi: 10.1001/archneur.61.2.217. PubMed DOI

Simon JH, Kinkel RP, Jacobs L, et al. A Wallerian degeneration pattern in patients at risk for MS. Neurology. 2000;54:1155–1160. doi: 10.1212/WNL.54.5.1155. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...