An Evaluation of Understudied Phytocannabinoids and Their Effects in Two Neuronal Models
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 AT011162
NCCIH NIH HHS - United States
T32 DA024628
NIDA NIH HHS - United States
AT011162
NIH HHS - United States
PubMed
34500785
PubMed Central
PMC8434068
DOI
10.3390/molecules26175352
PII: molecules26175352
Knihovny.cz E-zdroje
- Klíčová slova
- cannabichromene, cannabidiolic acid, cannabidivarin, cannabidivarinic acid, phytocannabinoids, tetrahydrocannabivarin,
- MeSH
- biologické modely * MeSH
- fytonutrienty chemie farmakologie MeSH
- kanabinoidy chemie farmakologie MeSH
- kultivované buňky MeSH
- lidé MeSH
- myši MeSH
- neurony účinky léků metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fytonutrienty MeSH
- kanabinoidy MeSH
Cannabis contains more than 100 phytocannabinoids. Most of these remain poorly characterized, particularly in neurons. We tested a panel of five phytocannabinoids-cannabichromene (CBC), cannabidiolic acid (CBDA), cannabidivarin (CBDV), cannabidivarinic acid (CBDVA), and Δ9-tetrahydrocannabivarin (THCV) in two neuronal models, autaptic hippocampal neurons and dorsal root ganglion (DRG) neurons. Autaptic neurons expressed a form of CB1-dependent retrograde plasticity while DRGs expressed a variety of transient receptor potential (TRP) channels. CBC, CBDA, and CBDVA had little or no effect on neuronal cannabinoid signaling. CBDV and THCV differentially inhibited cannabinoid signaling. THCV inhibited CB1 receptors presynaptically while CBDV acted post-synaptically, perhaps by inhibiting 2-AG production. None of the compounds elicited a consistent DRG response. In summary, we find that two of five 'minor' phytocannabinoids tested antagonized CB1-based signaling in a neuronal model, but with very different mechanisms. Our findings highlight the diversity of potential actions of phytocannabinoids and the importance of fully evaluating these compounds in neuronal models.
Zobrazit více v PubMed
Elsohly M.A., Slade D. Chemical constituents of marijuana: The complex mixture of natural cannabinoids. Life Sci. 2005;78:539–548. doi: 10.1016/j.lfs.2005.09.011. PubMed DOI
Gaoni Y., Mechoulam R. Isolation, structure and partial synthesis of an active constituent of hashish. J. Am. Chem. Soc. 1964;86:1646–1647. doi: 10.1021/ja01062a046. DOI
Howlett A.C., Barth F., Bonner T.I., Cabral G., Casellas P., Devane W.A., Felder C.C., Herkenham M., Mackie K., Martin B.R., et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev. 2002;54:161–202. doi: 10.1124/pr.54.2.161. PubMed DOI
Matsuda L.A., Lolait S.J., Brownstein M.J., Young A.C., Bonner T.I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990;346:561–564. doi: 10.1038/346561a0. PubMed DOI
Munro S., Thomas K.L., Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365:61–65. doi: 10.1038/365061a0. PubMed DOI
Piomelli D. The molecular logic of endocannabinoid signalling. Nat. Rev. Neurosci. 2003;4:873–884. doi: 10.1038/nrn1247. PubMed DOI
Adams R., Hunt M., Clark J.H. Structure of cannabidiol, a product isolated from the marihuana extract of Minnesota wild hemp. J. Am. Chem. Soc. 1940;62:4. doi: 10.1021/ja01858a058. DOI
Billakota S., Devinsky O., Marsh E. Cannabinoid therapy in epilepsy. Curr. Opin. Neurol. 2019;32:220–226. doi: 10.1097/WCO.0000000000000660. PubMed DOI
Luo X., Reiter M.A., d’Espaux L., Wong J., Denby C.M., Lechner A., Zhang Y., Grzybowski A.T., Harth S., Lin W., et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature. 2019;567:123–126. doi: 10.1038/s41586-019-0978-9. PubMed DOI
Russo E.B. Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol. 2011;163:1344–1364. doi: 10.1111/j.1476-5381.2011.01238.x. PubMed DOI PMC
Mechoulam R., Parker L.A., Gallily R. Cannabidiol: An overview of some pharmacological aspects. J. Clin. Pharmacol. 2002;42:11S–19S. doi: 10.1002/j.1552-4604.2002.tb05998.x. PubMed DOI
Laprairie R.B., Bagher A.M., Kelly M.E., Denovan-Wright E.M. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br. J. Pharmacol. 2015;172:4790–4805. doi: 10.1111/bph.13250. PubMed DOI PMC
Straiker A., Dvorakova M., Zimmowitch A., Mackie K. Cannabidiol Inhibits Endocannabinoid Signaling in Autaptic Hippocampal Neurons. Mol. Pharmacol. 2018;94:743–748. doi: 10.1124/mol.118.111864. PubMed DOI PMC
Murataeva N., Straiker A., Mackie K. Parsing the players: 2-arachidonoylglycerol synthesis and degradation in the CNS. Br. J. Pharmacol. 2014;171:1379–1391. doi: 10.1111/bph.12411. PubMed DOI PMC
Muller C., Morales P., Reggio P.H. Cannabinoid Ligands Targeting TRP Channels. Front. Mol. Neurosci. 2018;11:487. doi: 10.3389/fnmol.2018.00487. PubMed DOI PMC
Smart D., Gunthorpe M.J., Jerman J.C., Nasir S., Gray J., Muir A.I., Chambers J.K., Randall A.D., Davis J.B. The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1) Br. J. Pharmacol. 2000;129:227–230. doi: 10.1038/sj.bjp.0703050. PubMed DOI PMC
Straiker A., Mackie K. Depolarization-induced suppression of excitation in murine autaptic hippocampal neurones. J. Physiol. 2005;569:501–517. doi: 10.1113/jphysiol.2005.091918. PubMed DOI PMC
Straiker A., Mackie K. Metabotropic suppression of excitation in murine autaptic hippocampal neurons. J. Physiol. 2007;578:773–785. doi: 10.1113/jphysiol.2006.117499. PubMed DOI PMC
Kellogg R., Mackie K., Straiker A. Cannabinoid CB1 receptor-dependent long-term depression in autaptic excitatory neurons. J. Neurophysiol. 2009;102:1160–1171. doi: 10.1152/jn.00266.2009. PubMed DOI PMC
Bekkers J.M., Stevens C.F. Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture. Proc. Natl. Acad. Sci. USA. 1991;88:7834–7838. doi: 10.1073/pnas.88.17.7834. PubMed DOI PMC
Furshpan E.J., MacLeish P.R., O’Lague P.H., Potter D.D. Chemical transmission between rat sympathetic neurons and cardiac myocytes developing in microcultures: Evidence for cholinergic, adrenergic, and dual-function neurons. Proc. Natl. Acad. Sci. USA. 1976;73:4225–4229. doi: 10.1073/pnas.73.11.4225. PubMed DOI PMC
Levison S.W., McCarthy K.D. Characterization and partial purification of AIM: A plasma protein that induces rat cerebral type 2 astroglia from bipotential glial progenitors. J. Neurochem. 1991;57:782–794. doi: 10.1111/j.1471-4159.1991.tb08220.x. PubMed DOI
Harada K., Ito M., Wang X., Tanaka M., Wongso D., Konno A., Hirai H., Hirase H., Tsuboi T., Kitaguchi T. Red fluorescent protein-based cAMP indicator applicable to optogenetics and in vivo imaging. Sci. Rep. 2017;7:7351. doi: 10.1038/s41598-017-07820-6. PubMed DOI PMC
Thomas L.S., Gehrig J. ImageJ/Fiji ROI 1-click tools for rapid manual image annotations and measurements. MicroPubl. Biol. :2020. doi: 10.17912/micropub.biology.000215. PubMed DOI PMC
Sleigh J.N., Weir G.A., Schiavo G. A simple, step-by-step dissection protocol for the rapid isolation of mouse dorsal root ganglia. BMC Res. Notes. 2016;9:82. doi: 10.1186/s13104-016-1915-8. PubMed DOI PMC
Hatoum N.S., Davis W.M., Elsohly M.A., Turner C.E. Cannabichromene and delta 9-tetrahydrocannabinol: Interactions relative to lethality, hypothermia and hexobarbital hypnosis. Gen. Pharmacol. 1981;12:357–362. doi: 10.1016/0306-3623(81)90090-2. PubMed DOI
Davis W.M., Hatoum N.S. Neurobehavioral actions of cannabichromene and interactions with delta 9-tetrahydrocannabinol. Gen. Pharmacol. 1983;14:247–252. doi: 10.1016/0306-3623(83)90004-6. PubMed DOI
Wirth P.W., Watson E.S., ElSohly M., Turner C.E., Murphy J.C. Anti-inflammatory properties of cannabichromene. Life Sci. 1980;26:1991–1995. doi: 10.1016/0024-3205(80)90631-1. PubMed DOI
Udoh M., Santiago M., Devenish S., McGregor I.S., Connor M. Cannabichromene is a cannabinoid CB2 receptor agonist. Br. J. Pharmacol. 2019;176:4537–4547. doi: 10.1111/bph.14815. PubMed DOI PMC
De Petrocellis L., Ligresti A., Moriello A.S., Allara M., Bisogno T., Petrosino S., Stott C.G., Di Marzo V. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br. J. Pharmacol. 2011;163:1479–1494. doi: 10.1111/j.1476-5381.2010.01166.x. PubMed DOI PMC
Maione S., Piscitelli F., Gatta L., Vita D., De Petrocellis L., Palazzo E., de Novellis V., Di Marzo V. Non-psychoactive cannabinoids modulate the descending pathway of antinociception in anaesthetized rats through several mechanisms of action. Br. J. Pharmacol. 2011;162:584–596. doi: 10.1111/j.1476-5381.2010.01063.x. PubMed DOI PMC
DeLong G.T., Wolf C.E., Poklis A., Lichtman A.H. Pharmacological evaluation of the natural constituent of Cannabis sativa, cannabichromene and its modulation by Delta(9)-tetrahydrocannabinol. Drug Alcohol Depend. 2010;112:126–133. doi: 10.1016/j.drugalcdep.2010.05.019. PubMed DOI PMC
Shinjyo N., Di Marzo V. The effect of cannabichromene on adult neural stem/progenitor cells. Neurochem. Int. 2013;63:432–437. doi: 10.1016/j.neuint.2013.08.002. PubMed DOI
Mitjavila J., Yin D., Kulkarni P.M., Zanato C., Thakur G.A., Ross R., Greig I., Mackie K., Straiker A. Enantiomer-specific positive allosteric modulation of CB1 signaling in autaptic hippocampal neurons. Pharmacol. Res. 2018;129:475–481. doi: 10.1016/j.phrs.2017.11.019. PubMed DOI PMC
Straiker A., Mitjavila J., Yin D., Gibson A., Mackie K. Aiming for allosterism: Evaluation of allosteric modulators of CB1 in a neuronal model. Pharmacol. Res. 2015;99:370–376. doi: 10.1016/j.phrs.2015.07.017. PubMed DOI PMC
Taura F., Morimoto S., Shoyama Y. Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L.. Biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid. J. Biol. Chem. 1996;271:17411–17416. doi: 10.1074/jbc.271.29.17411. PubMed DOI
Guy G., Wright S., Brodie J., Woolley-Roberts M., Maldonado R., Parolaro D., Luongo L. Use of Cannabidiolic Acid in the Treatment of Autism Spectrum Disorder and Associated Disorders. [(accessed on 15 July 2021)];2019 Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=US241444657&docAn=16092560.
Bolognini D., Costa B., Maione S., Comelli F., Marini P., Di Marzo V., Parolaro D., Ross R.A., Gauson L.A., Cascio M.G., et al. The plant cannabinoid Delta9-tetrahydrocannabivarin can decrease signs of inflammation and inflammatory pain in mice. Br. J. Pharmacol. 2010;160:677–687. doi: 10.1111/j.1476-5381.2010.00756.x. PubMed DOI PMC
Kleinhenz M.D., Magnin G., Lin Z., Griffin J., Kleinhenz K.E., Montgomery S., Curtis A., Martin M., Coetzee J.F. Plasma concentrations of eleven cannabinoids in cattle following oral administration of industrial hemp (Cannabis sativa) Sci. Rep. 2020;10:12753–12763. doi: 10.1038/s41598-020-69768-4. PubMed DOI PMC
Anderson L.L., Low I.K., Banister S.D., McGregor I.S., Arnold J.C. Pharmacokinetics of Phytocannabinoid Acids and Anticonvulsant Effect of Cannabidiolic Acid in a Mouse Model of Dravet Syndrome. J. Nat. Prod. 2019;82:3047–3055. doi: 10.1021/acs.jnatprod.9b00600. PubMed DOI
Merkus F.W. Cannabivarin and tetrahydrocannabivarin, two new constituents of hashish. Nature. 1971;232:579–580. doi: 10.1038/232579a0. PubMed DOI
Thomas A., Stevenson L.A., Wease K.N., Price M.R., Baillie G., Ross R.A., Pertwee R.G. Evidence that the plant cannabinoid Delta9-tetrahydrocannabivarin is a cannabinoid CB1 and CB2 receptor antagonist. Br. J. Pharmacol. 2005;146:917–926. doi: 10.1038/sj.bjp.0706414. PubMed DOI PMC
Pertwee R.G. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br. J. Pharmacol. 2008;153:199–215. doi: 10.1038/sj.bjp.0707442. PubMed DOI PMC
Hill A.J., Weston S.E., Jones N.A., Smith I., Bevan S.A., Williamson E.M., Stephens G.J., Williams C.M., Whalley B.J. Δ9-Tetrahydrocannabivarin suppresses in vitro epileptiform and in vivo seizure activity in adult rats. Epilepsia. 2010;51:1522–1532. doi: 10.1111/j.1528-1167.2010.02523.x. PubMed DOI
Straiker A.J., Borden C.R., Sullivan J.M. G-Protein alpha Subunit Isoforms Couple Differentially to Receptors that Mediate Presynaptic Inhibition at Rat Hippocampal Synapses. J. Neurosci. 2002;22:2460–2468. doi: 10.1523/JNEUROSCI.22-07-02460.2002. PubMed DOI PMC
Howlett A.C. Cannabinoid inhibition of adenylate cyclase: Relative activity of constituents and metabolites of marihuana. Neuropharmacology. 1987;26:507–512. doi: 10.1016/0028-3908(87)90035-9. PubMed DOI
Howlett A.C. Pharmacology of cannabinoid receptors. Annu Rev. Pharmacol. Toxicol. 1995;35:607–634. doi: 10.1146/annurev.pa.35.040195.003135. PubMed DOI
Vollner L., Bieniek D., Korte F. Hashish. XX. Cannabidivarin, a new hashish constituent. Tetrahedron Lett. 1969;3:145–147. doi: 10.1016/S0040-4039(01)87494-3. PubMed DOI
Hill A.J., Mercier M.S., Hill T.D., Glyn S.E., Jones N.A., Yamasaki Y., Futamura T., Duncan M., Stott C.G., Stephens G.J., et al. Cannabidivarin is anticonvulsant in mouse and rat. Br. J. Pharmacol. 2012;167:1629–1642. doi: 10.1111/j.1476-5381.2012.02207.x. PubMed DOI PMC
Hill T.D., Cascio M.G., Romano B., Duncan M., Pertwee R.G., Williams C.M., Whalley B.J., Hill A.J. Cannabidivarin-rich cannabis extracts are anticonvulsant in mouse and rat via a CB1 receptor-independent mechanism. Br. J. Pharmacol. 2013;170:679–692. doi: 10.1111/bph.12321. PubMed DOI PMC
Iannotti F.A., Hill C.L., Leo A., Alhusaini A., Soubrane C., Mazzarella E., Russo E., Whalley B.J., Di Marzo V., Stephens G.J. Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) channels in vitro: Potential for the treatment of neuronal hyperexcitability. ACS Chem. Neurosci. 2014;5:1131–1141. doi: 10.1021/cn5000524. PubMed DOI
Amada N., Yamasaki Y., Williams C.M., Whalley B.J. Cannabidivarin (CBDV) suppresses pentylenetetrazole (PTZ)-induced increases in epilepsy-related gene expression. PeerJ. 2013;1:e214. doi: 10.7717/peerj.214. PubMed DOI PMC
Huizenga M.N., Sepulveda-Rodriguez A., Forcelli P.A. Preclinical safety and efficacy of cannabidivarin for early life seizures. Neuropharmacology. 2019;148:189–198. doi: 10.1016/j.neuropharm.2019.01.002. PubMed DOI PMC
Zamberletti E., Gabaglio M., Piscitelli F., Brodie J.S., Woolley-Roberts M., Barbiero I., Tramarin M., Binelli G., Landsberger N., Kilstrup-Nielsen C., et al. Cannabidivarin completely rescues cognitive deficits and delays neurological and motor defects in male Mecp2 mutant mice. J. Psychopharmacol. 2019;33:894–907. doi: 10.1177/0269881119844184. PubMed DOI
Schroeder J.E., McCleskey E.W. Inhibition of Ca2+ currents by a mu-opioid in a defined subset of rat sensory neurons. J. Neurosci. 1993;13:867–873. doi: 10.1523/JNEUROSCI.13-02-00867.1993. PubMed DOI PMC
Wangzhou A., McIlvried L.A., Paige C., Barragan-Iglesias P., Shiers S., Ahmad A., Guzman C.A., Dussor G., Ray P.R., Gereau R.W., et al. Pharmacological target-focused transcriptomic analysis of native vs cultured human and mouse dorsal root ganglia. Pain. 2020;161:1497–1517. doi: 10.1097/j.pain.0000000000001866. PubMed DOI PMC
Devinsky O., Patel A.D., Thiele E.A., Wong M.H., Appleton R., Harden C.L., Greenwood S., Morrison G., Sommerville K., On behalf of the GWPCARE1 Part A Study Group Randomized, dose-ranging safety trial of cannabidiol in Dravet syndrome. Neurology. 2018;90:1204–1211. doi: 10.1212/WNL.0000000000005254. PubMed DOI PMC
Anderson L.L., Etchart M.G., Bahceci D., Golembiewski T.A., Arnold J.C. Cannabis constituents interact at the drug efflux pump BCRP to markedly increase plasma cannabidiolic acid concentrations. Sci. Rep. 2021;11:14948. doi: 10.1038/s41598-021-94212-6. PubMed DOI PMC
Doohan P.T., Oldfield L.D., Arnold J.C., Anderson L.L. Cannabinoid Interactions with Cytochrome P450 Drug Metabolism: A Full-Spectrum Characterization. AAPS J. 2021;23:91. doi: 10.1208/s12248-021-00616-7. PubMed DOI
Riedel G., Fadda P., McKillop-Smith S., Pertwee R.G., Platt B., Robinson L. Synthetic and plant-derived cannabinoid receptor antagonists show hypophagic properties in fasted and non-fasted mice. Br. J. Pharmacol. 2009;156:1154–1166. doi: 10.1111/j.1476-5381.2008.00107.x. PubMed DOI PMC
Tudge L., Williams C., Cowen P.J., McCabe C. Neural effects of cannabinoid CB1 neutral antagonist tetrahydrocannabivarin on food reward and aversion in healthy volunteers. Int. J. Neuropsychopharmacol. 2015;18:1–9. doi: 10.1093/ijnp/pyu094. PubMed DOI PMC
McPartland J.M., Duncan M., Di Marzo V., Pertwee R.G. Are cannabidiol and Delta(9) -tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br. J. Pharmacol. 2015;172:737–753. doi: 10.1111/bph.12944. PubMed DOI PMC
Ben-Shabat S., Fride E., Sheskin T., Tamiri T., Rhee M.H., Vogel Z., Bisogno T., De Petrocellis L., Di Marzo V., Mechoulam R. An entourage effect: Inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur. J. Pharmacol. 1998;353:23–31. doi: 10.1016/S0014-2999(98)00392-6. PubMed DOI
Mackie K., Stella N. Cannabinoid receptors and endocannabinoids: Evidence for new players. AAPS J. 2006;8:298–306. doi: 10.1007/BF02854900. PubMed DOI PMC
Blankman J.L., Simon G.M., Cravatt B.F. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem. Biol. 2007;14:1347–1356. doi: 10.1016/j.chembiol.2007.11.006. PubMed DOI PMC
Morales P., Hurst D.P., Reggio P.H. Molecular Targets of the Phytocannabinoids: A Complex Picture. Prog. Chem. Org. Nat. Prod. 2017;103:103–131. PubMed PMC