• This record comes from PubMed

Determining Johnson-Cook Constitutive Equation for Low-Carbon Steel via Taylor Anvil Test

. 2021 Aug 25 ; 14 (17) : . [epub] 20210825

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
19-15479S Grantová Agentura České Republiky

Tristal steel is low-carbon construction-type steel widely used in the automotive industry, e.g., for braking components. Given the contemporary demands on the high-volume production of such components, these are typically fabricated using automatic sequential machines, which can produce components at strain rates up to 103 s-1. For this reason, characterising the behaviour of the used material at high strain rates is of the utmost importance for successful industrial production. This study focuses on the characterisation of the behaviour of low-carbon steel via developing its material model using the Johnson-Cook constitutive equation. At first, the Taylor anvil test is performed. Subsequently, the acquired data together with the results of observations of structures and properties of the tested specimens are used to fill the necessary parameters into the equation. Finally, the developed equation is used to numerically simulate the Taylor anvil test and the predicted data is correlated with the experimentally acquired one. The results showed a satisfactory correlation of the experimental and predicted data; the deformed specimen region featured increased occurrence of dislocations, as well as higher hardness (its original value of 88 HV increased to more than 200 HV after testing), which corresponded to the predicted distributions of effective imposed strain and compressive stress.

See more in PubMed

Hammer J. Automatic defensive control of asynchronous sequential machines. Int. J. Control. 2016;89:193–209. doi: 10.1080/00207179.2015.1064547. DOI

Chen D.Y., Xu Y., Zhang S.H., Ma Y., El-Aty A.A., Pokrovsky A.I., Bakinovskaya A.A. A novel method to evaluate the high strain rate formability of sheet metals under impact hydroforming. J. Mater. Process. Technol. 2021;287:116553. doi: 10.1016/j.jmatprotec.2019.116553. DOI

Malvar L., Crawford J. Dynamic Increase Factors for Steel Reinforcing Bars; Proceedings of the Twenty-Eighth DoD Explosives Safety Seminar Proceedings; Orlando, FL, USA. 18–20 August 1998.

Razaqpur G., Mekky W., Foo S. Fundamental concepts in blast resistance evaluation of structures. Can. J. Civ. Eng. 2009;36:1292–1304. doi: 10.1139/L09-032. DOI

Kunčická L., Kocich R., Dvořák K., Macháčková A. Rotary swaged laminated Cu-Al composites: Effect of structure on residual stress and mechanical and electric properties. Mater. Sci. Eng. 2019;742:742–750. doi: 10.1016/j.msea.2018.11.026. DOI

Kunčická L., Kocich R. Deformation behaviour of Cu-Al clad composites produced by rotary swaging. IOP Conf. Ser. Mater. Sci. Eng. 2018;369:012029. doi: 10.1088/1757-899X/369/1/012029. DOI

Kunčická L., Kocich R., Strunz P., Macháčková A. Texture and residual stress within rotary swaged Cu/Al clad composites. Mater. Lett. 2018;230:88–91. doi: 10.1016/j.matlet.2018.07.085. DOI

Ma Y., Xu Y., Zhang S.H., Banabic D., El-Aty A.A., Chen D., Cheng M., Song H., Pokrovsky A.I., Chen G. Investigation on formability enhancement of 5A06 aluminium sheet by impact hydroforming. CIRP Ann. 2018;67:281–284. doi: 10.1016/j.cirp.2018.04.024. DOI

El-Aty A.A., Xu Y., Zhang S.H., Ha S., Ma Y., Chen D. Impact of high strain rate deformation on the mechanical behavior, fracture mechanisms and anisotropic response of 2060 Al-Cu-Li alloy. J. Adv. Res. 2019;18:19–37. doi: 10.1016/j.jare.2019.01.012. PubMed DOI PMC

Kosing O.E., Skews B.W. High speed metal forming of circular disks and cylindrical tubes in a liquid shock tube. Trans. Built Environ. 1998;32:661–670.

Kunčická L., Macháčková A., Lavery N.P., Kocich R., Cullen J.C.T., Hlaváč L.M. Effect of thermomechanical processing via rotary swaging on properties and residual stress within tungsten heavy alloy. Int. J. Refract. Met. Hard Mater. 2020;87:105120. doi: 10.1016/j.ijrmhm.2019.105120. DOI

Wang Z., Chen J., Besnard C., Kunčická L., Kocich R., Korsunsky A.M. In situ neutron diffraction investigation of texture-dependent Shape Memory Effect in a near equiatomic NiTi alloy. Acta Mater. 2021;202:135–148. doi: 10.1016/j.actamat.2020.10.049. DOI

Kocich R., Kunčická L., Davis C.F., Lowe T.C., Szurman I., Macháčková A. Deformation behavior of multilayered Al-Cu clad composite during cold-swaging. Mater. Des. 2016;90:379–388. doi: 10.1016/j.matdes.2015.10.145. DOI

Johnson G.R., Cook W.H. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High Temperatures; Proceedings of the 7th International Symposium on Ballistics; Hague, The Netherlands. 19–21 April 1983; pp. 541–547.

Buchar J., Forejt M., Jopek M., Křivánek I. Evaluation of constitutive relations for high strain rate behaviour using the Taylor Test. J. DePhysique. 2000;9:75–80. doi: 10.1051/jp4:2000913. DOI

Khan A.S., Huang S. Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10−5−104s−1. Int. J. Plast. 1992;8:397–424. doi: 10.1016/0749-6419(92)90057-J. DOI

Huh H., Lee H.J., Song J.H. Dynamic hardening equation of the auto-body steel sheet with the variation of temperature. Int. J. Automot. Technol. 2012;13:43–60. doi: 10.1007/s12239-012-0005-8. DOI

Zerilli F.J., Armstrong R.W. Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys. 1987;61:1816–1825. doi: 10.1063/1.338024. DOI

Preston D.L., Tonks D.L., Wallace D.C. Model of plastic deformation for extreme loading conditions. J. Appl. Phys. 2003;93:211–220. doi: 10.1063/1.1524706. DOI

Piao M., Huh H., Lee I., Ahn K., Kim H., Park P. Characterization of flow stress at ultra-high strain rates by proper extrapolation with Taylor impact tests. Int. J. Impact Eng. 2016;91:142–157. doi: 10.1016/j.ijimpeng.2016.01.004. DOI

Asala G., Andersson J., Ojo O.A. A study of the dynamic impact behaviour of IN 718 and ATI 718Plus® superalloys. Philos. Mag. 2019;99:419–437. doi: 10.1080/14786435.2018.1540891. DOI

Kouraytem N., Chanut R.A., Watring D.S., Loveless T., Varga J., Spear A.D., Kingstedt O.T. Dynamic-loading behavior and anisotropic deformation of pre- and post-heat-treated IN718 fabricated by laser powder bed fusion. Addit. Manuf. 2020;33:101083. doi: 10.1016/j.addma.2020.101083. DOI

Forni D., Mazzucato F., Valente A., Cadoni E. High strain-rate behaviour of as-cast and as-build Inconel 718 alloys at elevated temperatures. Mech. Mater. 2021;159:103859. doi: 10.1016/j.mechmat.2021.103859. DOI

Chakravarthi K.V.A., Koundinya N.T.B.N., Narayana Murty S.V.S., Nageswara Rao B. Microstructure, properties and hot workability of M300 grade maraging steel. Def. Technol. 2018;14:51–58. doi: 10.1016/j.dt.2017.09.001. DOI

Song B., Sanborn B., Wakeland P.E., Furnish M.D. Dynamic Characterization and Stress-Strain Symmetry of Vascomax ® C250 Maraging Steel in Compression and Tension. Procedia Eng. 2017;197:42–51. doi: 10.1016/j.proeng.2017.08.080. DOI

Dehgahi S., Alaghmandfard R., Tallon J., Odeshi A., Mohammadi M. Microstructural evolution and high strain rate compressive behavior of as-built and heat-treated additively manufactured maraging steels. Mater. Sci. Eng. A. 2021;815:141183. doi: 10.1016/j.msea.2021.141183. DOI

Chapman D.J., Radford D.D., Walley S.M. A history of the Taylor test and its present use in the study of lightweight materials; Proceedings of the 3rd Design and Use of Light-Weight Materials Conference, University of Aveiro; Aveiro, Portugal. 8–10 October 2005; pp. 12–24.

Taylor G.I. The use of flat-ended projectiles for determining dynamic yield stress I. Theoretical considerations. Proc. R. Soc. London Ser. A Math. Phys. Sci. 1948;194:289–299. doi: 10.1098/rspa.1948.0081. DOI

Meyers M.A. Dynamic Behavior of Materials. 1st ed. John Wiley & Sons, Inc.; New York, NY, USA: 1994.

Gillis P.P., Jones S.E. A direct correlation of strength with impact velocity in the Taylor test. J. Eng. Mater. Technol. Trans. 1989;111:327–330. doi: 10.1115/1.3226474. DOI

Chakraborty S., Shaw A., Banerjee B. An axisymmetric model for Taylor impact test and estimation of metal plasticity. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015;471:20140556. doi: 10.1098/rspa.2014.0556. DOI

Kumar B.P., Joshi D., Mohith M., Gopikrishna N. Experimental Study of Micro Structural and Anti-Corrosion Behaviorof Ni & Ni-Cr Coating on Mild Steel. Mater. Today Proc. 2019;18:2496–2508. doi: 10.1016/j.matpr.2019.07.106. DOI

Humphreys F.J., Hetherly M. Recrystallization and Related Annealing Phenomena. 2nd ed. Elsevier Ltd.; Oxford, UK: 2004.

Kocich R., Kunčická L., Mihola M., Skotnicová K. Numerical and experimental analysis of twist channel angular pressing (TCAP) as a SPD process. Mater. Sci. Eng. A. 2013;563:86–94. doi: 10.1016/j.msea.2012.11.047. DOI

Kocich R., Macháčková A., Kunčická L. Twist channel multi-angular pressing (TCMAP) as a new SPD process: Numerical and experimental study. Mater. Sci. Eng. A. 2014;612:445–455. doi: 10.1016/j.msea.2014.06.079. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...