Characterization of Sodium Alginate Hydrogels Reinforced with Nanoparticles of Hydroxyapatite for Biomedical Applications

. 2021 Aug 30 ; 13 (17) : . [epub] 20210830

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34502967

In recent years, researchers working in biomedical science and technology have investigated alternatives for enhancing the mechanical properties of biomedical materials. In this work, sodium alginate (SA) hydrogel-reinforced nanoparticles (NPs) of hydroxyapatite (HA) were prepared to enhance the mechanical properties of this polymer. Compression tests showed an increase of 354.54% in ultimate compressive strength (UCS), and 154.36% in Young's modulus with the addition of these NPs compared with pure SA. Thermogravimetric analysis (TGA) revealed that the amount of residual water is not negligible and covered a range from 20 to 35 wt%, and the decomposition degree of the alginate depends on the hydroxyapatite content, possibly due to the displacement of sodium ions by the hydroxyapatite and not by calcium chloride. Further, there is an important effect possibly due to the existence of an interaction of hydrogen bonds between the hydroxyl of the alginate and the oxygen atoms of the hydroxyapatite, so signals appear upfield in nuclear magnetic resonance (NMR) data. An increase in the accumulation of HA particles was observed with the use of X-ray microtomography, in which the quantified volume of particles per reconstructed volume corresponded accordingly to the increase in the mechanical properties of the hydrogel.

Zobrazit více v PubMed

Zeegers W.S., Bohnen L.M.L.J., Laaper M., Verhaegen M.J.A. Artificial disc replacement with the modular type SB Charité III: 2-year results in 50 prospectively studied patients. Eur. Spine J. 1999;8:210–217. doi: 10.1007/s005860050160. PubMed DOI PMC

Goda E.S., Gab-Allah M., Singu B.S., Yoon K.R. Halloysite nanotubes based electrochemical sensors: A review. Microchem. J. 2019;147:1083–1096. doi: 10.1016/j.microc.2019.04.011. DOI

Hyde P., Tipper J., Fisher J., Hall R. Wear and biological effects of a semi-constrained total disc replacement subject to modified ISO standard test conditions. J. Mech. Behav. Biomed. Mater. 2015;44:43–52. doi: 10.1016/j.jmbbm.2014.12.001. PubMed DOI

Mohammed C., Mahabir S., Mohammed K., John N., Lee K.-Y., Ward K. Calcium Alginate Thin Films Derived from Sargassum natans for the Selective Adsorption of Cd2+, Cu2+, and Pb2+ Ions. Ind. Eng. Chem. Res. 2019;58:1417–1425. doi: 10.1021/acs.iecr.8b03691. DOI

Chiew C.S.C., Poh P.E., Pasbakhsh P., Tey B.T., Yeoh H.K., Chan E.S. Applied Clay Science Physicochemical characterization of halloysite / alginate bionanocomposite hydrogel. Appl. Clay Sci. 2014;101:444–454. doi: 10.1016/j.clay.2014.09.007. DOI

Murguía-Flores D.A., Bonilla-Ríos J., Canales-Fiscal M.R., Sánchez-Fernández A. Protein adsorption through Chitosan–Alginate membranes for potential applications. Chem. Cent. J. 2016;10:1–22. doi: 10.1186/s13065-016-0167-y. PubMed DOI PMC

Gullbrand S., Schaer T.P., Agarwal P., Bendigo J.R., Dodge G.R., Chen W., Elliott D.M., Mauck R.L., Malhotra N.R., Smith L.J. Translation of an injectable triple-interpenetrating-network hydrogel for intervertebral disc regeneration in a goat model. Acta Biomater. 2017;60:201–209. doi: 10.1016/j.actbio.2017.07.025. PubMed DOI PMC

Huang B., Liu M., Long Z., Shen Y., Zhou C. Effects of halloysite nanotubes on physical properties and cytocompatibility of alginate composite hydrogels. Mater. Sci. Eng. C. 2017;70:303–310. doi: 10.1016/j.msec.2016.09.001. PubMed DOI

Jiang Y.-Y., Zhu Y.-J., Li H., Zhang Y.-G., Shen Y.-Q., Sun T.-W., Chen F. Preparation and enhanced mechanical properties of hybrid hydrogels comprising ultralong hydroxyapatite nanowires and sodium alginate. J. Colloid Interface Sci. 2017;497:266–275. doi: 10.1016/j.jcis.2017.03.032. PubMed DOI

Toti U.S., Aminabhavi T.M. Different viscosity grade sodium alginate and modified sodium alginate membranes in pervapo-ration separation of water + acetic acid and water + isopropanol mixtures. J. Memb. Sci. 2004;228:199–208. doi: 10.1016/j.memsci.2003.10.008. DOI

Davis T.A., Llanes F., Volesky B., Diaz-Pulido G., McCook L., Mucci A. 1H-NMR Study of Na Alginates Extracted from Sargassum spp. in Relation to Metal Biosorption. Appl. Biochem. Biotechnol. 2003;110:75–90. doi: 10.1385/ABAB:110:2:75. PubMed DOI

Bertolino V., Cavallaro G., Lazzara G., Merli M., Milioto S., Parisi F., Sciascia L. Effect of the Biopolymer Charge and the Nanoclay Morphology on Nanocomposite Materials. Ind. Eng. Chem. Res. 2016;55:7373–7380. doi: 10.1021/acs.iecr.6b01816. DOI

Kuo C.K., Ma P.X. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials. 2001;22:511–521. doi: 10.1016/S0142-9612(00)00201-5. PubMed DOI

Russo R., Malinconico M., Santagata G. Effect of Cross-Linking with Calcium Ions on the Physical Properties of Alginate Films. Biomacromolecules. 2007;8:3193–3197. doi: 10.1021/bm700565h. PubMed DOI

Li L., Fang Y., Vreeker R., Appelqvist I., Mendes E. Reexamining the egg-box model in calcium–Alginate gels with X-ray dif-fraction. Biomacromolecules. 2007;8:464–468. doi: 10.1021/bm060550a. PubMed DOI

Esmaeili A., Behzadi S. Performance comparison of two herbal and industrial medicines using nanoparticles with a starch/cellulose shell and alginate core for drug delivery: In vitro studies. Colloids Surf. B Biointerfaces. 2017;158:556–561. doi: 10.1016/j.colsurfb.2017.07.018. PubMed DOI

Sabbagh N., Akbari A., Arsalani N., Eftekhari-Sis B., Hamishekar H. Halloysite-based hybrid bionanocomposite hydrogels as potential drug delivery systems. Appl. Clay Sci. 2017;148:48–55. doi: 10.1016/j.clay.2017.08.009. DOI

Sandri G., Aguzzi C., Rossi S., Bonferoni M.C., Bruni G., Boselli C., Cornaglia A.I., Riva F., Viseras C., Caramella C., et al. Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomater. 2017;57:216–224. doi: 10.1016/j.actbio.2017.05.032. PubMed DOI

Schindelin J., Arganda-Carreras I., Frise E. Fiji: An open-source platform for biological-image analysis. Nature methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Rueden C.T., Schindelin J., Hiner M.C., Dezonia B.E., Walter A.E., Arena E.T., Eliceiri K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017;18:1–26. doi: 10.1186/s12859-017-1934-z. PubMed DOI PMC

Brun F., Mancini L., Kasae P., Favretto S., Dreossi D., Tromba G. Pore3D: A software library for quantitative analysis of porous media. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2010;615:326–332. doi: 10.1016/j.nima.2010.02.063. DOI

Brus J., Urbanova M., Czernek J., Pavelkova M., Kubova K., Vyslouzil J., Abbrent S., Konefal R., Horský J., Vetchy D., et al. Structure and Dynamics of Alginate Gels Cross-Linked by Polyvalent Ions Probed via Solid State NMR Spectroscopy. Biomacromolecules. 2017;18:2478–2488. doi: 10.1021/acs.biomac.7b00627. PubMed DOI

El Nokab M.E.H., van der Wel P.C. Use of solid-state NMR spectroscopy for investigating polysaccharide-based hydrogels: A review. Carbohydr. Polym. 2020;240:116276. doi: 10.1016/j.carbpol.2020.116276. PubMed DOI

Huamani-Palomino R., Córdova B.M., Pichilingue L.E.R., Venâncio T., Valderrama A. Functionalization of an Alginate-Based Material by Oxidation and Reductive Amination. Polymers. 2021;13:255. doi: 10.3390/polym13020255. PubMed DOI PMC

Shahbazi M., Jäger H., Ahmadi S.J., Lacroix M. Electron beam crosslinking of alginate/nanoclay ink to improve functional properties of 3D printed hydrogel for removing heavy metal ions. Carbohydr. Polym. 2020;240:116211. doi: 10.1016/j.carbpol.2020.116211. PubMed DOI

Oliveira S.M., Barrias C.C., Almeida I.F., Costa P.C., Pena Ferreira M.R., Bahia M.F., Barbosa M.A. Injectability of a Bone Filler System Based on Hydroxyapatite Microspheres and a Vehicle With in situ Gel-Forming Ability. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008;87:49–58. doi: 10.1002/jbm.b.31066. PubMed DOI

Douglas T.E.L., Schietse J., Zima A., Gorodzha S., Parakhonskiy B.V., KhaleNkow D., Shkarin R., Ivanova A., Baumbach T., Weinhardt V., et al. Novel self-gelling injectable hydrogel/alpha-TCP composites for bone regeneration: Physiochemical and micro-computer tomographical characterization. J. Biomed. Mater. Res. Part A. 2018;106:822–828. doi: 10.1002/jbm.a.36277. PubMed DOI

Pereira D.R., Canadas R.F., Silva-Correia J., da Silva Morais A., Oliveira M.B., Dias I.R., Mano J.F., Marques A.P., Reis R.L., Oliveira J.M. Injectable gellan-gum/hydroxyapatite-based bilayered hydrogel composites forosteochondral tissue re-generation. Appl. Mater. Today. 2018;12:309–321. doi: 10.1016/j.apmt.2018.06.005. DOI

Lourenço A.H., Neves N., Ribeiro-Machado C., Sousa S.R., Lamghari M., Barrias C.C., Cabral A.T., Barbosa M.A., Ribeiro C.C. Injectable hybrid system for strontium local delivery promotes bone regeneration in a rat critical-sized defect model. Sci. Rep. 2017;7:5098. doi: 10.1038/s41598-017-04866-4. PubMed DOI PMC

Moreau D., Villain A., Bachy M., Proudhon H., Ku D.N., Hannouche D., Petite H., Corté L. In vivo evaluation of the bone integration of coated poly (vi-nyl-alcohol) hydrogel fiber implants. J. Mater. Sci. Mater. Med. 2017;28:114. doi: 10.1007/s10856-017-5923-6. PubMed DOI

Liang T., Wu J., Li F., Huang Z., Pi Y., Miao G., Ren W., Liu T., Jiang Q., Guo L. Drug-loading three-dimensional scaffolds based on hydroxyapatite-sodium alginate for bone regeneration. J. Biomed. Mater. Res. A. 2021;109:219–231. doi: 10.1002/jbm.a.37018. PubMed DOI

Yuan H., Zheng X., Liu W., Zhang H., Shao J., Yao J., Mao C., Hui J., Fan D. A novel bovine serum albumin and sodium alginate hydrogel scaffold doped with hydroxyapatite nanowires for cartilage defects repair. Colloids Surfaces B Biointerfaces. 2020;192:111041. doi: 10.1016/j.colsurfb.2020.111041. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...