Characterization of Sodium Alginate Hydrogels Reinforced with Nanoparticles of Hydroxyapatite for Biomedical Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34502967
PubMed Central
PMC8434489
DOI
10.3390/polym13172927
PII: polym13172927
Knihovny.cz E-zdroje
- Klíčová slova
- hydrogels, hydroxyapatite nanoparticles, intermolecular interactions, mechanical properties, micro-ct,
- Publikační typ
- časopisecké články MeSH
In recent years, researchers working in biomedical science and technology have investigated alternatives for enhancing the mechanical properties of biomedical materials. In this work, sodium alginate (SA) hydrogel-reinforced nanoparticles (NPs) of hydroxyapatite (HA) were prepared to enhance the mechanical properties of this polymer. Compression tests showed an increase of 354.54% in ultimate compressive strength (UCS), and 154.36% in Young's modulus with the addition of these NPs compared with pure SA. Thermogravimetric analysis (TGA) revealed that the amount of residual water is not negligible and covered a range from 20 to 35 wt%, and the decomposition degree of the alginate depends on the hydroxyapatite content, possibly due to the displacement of sodium ions by the hydroxyapatite and not by calcium chloride. Further, there is an important effect possibly due to the existence of an interaction of hydrogen bonds between the hydroxyl of the alginate and the oxygen atoms of the hydroxyapatite, so signals appear upfield in nuclear magnetic resonance (NMR) data. An increase in the accumulation of HA particles was observed with the use of X-ray microtomography, in which the quantified volume of particles per reconstructed volume corresponded accordingly to the increase in the mechanical properties of the hydrogel.
Zobrazit více v PubMed
Zeegers W.S., Bohnen L.M.L.J., Laaper M., Verhaegen M.J.A. Artificial disc replacement with the modular type SB Charité III: 2-year results in 50 prospectively studied patients. Eur. Spine J. 1999;8:210–217. doi: 10.1007/s005860050160. PubMed DOI PMC
Goda E.S., Gab-Allah M., Singu B.S., Yoon K.R. Halloysite nanotubes based electrochemical sensors: A review. Microchem. J. 2019;147:1083–1096. doi: 10.1016/j.microc.2019.04.011. DOI
Hyde P., Tipper J., Fisher J., Hall R. Wear and biological effects of a semi-constrained total disc replacement subject to modified ISO standard test conditions. J. Mech. Behav. Biomed. Mater. 2015;44:43–52. doi: 10.1016/j.jmbbm.2014.12.001. PubMed DOI
Mohammed C., Mahabir S., Mohammed K., John N., Lee K.-Y., Ward K. Calcium Alginate Thin Films Derived from Sargassum natans for the Selective Adsorption of Cd2+, Cu2+, and Pb2+ Ions. Ind. Eng. Chem. Res. 2019;58:1417–1425. doi: 10.1021/acs.iecr.8b03691. DOI
Chiew C.S.C., Poh P.E., Pasbakhsh P., Tey B.T., Yeoh H.K., Chan E.S. Applied Clay Science Physicochemical characterization of halloysite / alginate bionanocomposite hydrogel. Appl. Clay Sci. 2014;101:444–454. doi: 10.1016/j.clay.2014.09.007. DOI
Murguía-Flores D.A., Bonilla-Ríos J., Canales-Fiscal M.R., Sánchez-Fernández A. Protein adsorption through Chitosan–Alginate membranes for potential applications. Chem. Cent. J. 2016;10:1–22. doi: 10.1186/s13065-016-0167-y. PubMed DOI PMC
Gullbrand S., Schaer T.P., Agarwal P., Bendigo J.R., Dodge G.R., Chen W., Elliott D.M., Mauck R.L., Malhotra N.R., Smith L.J. Translation of an injectable triple-interpenetrating-network hydrogel for intervertebral disc regeneration in a goat model. Acta Biomater. 2017;60:201–209. doi: 10.1016/j.actbio.2017.07.025. PubMed DOI PMC
Huang B., Liu M., Long Z., Shen Y., Zhou C. Effects of halloysite nanotubes on physical properties and cytocompatibility of alginate composite hydrogels. Mater. Sci. Eng. C. 2017;70:303–310. doi: 10.1016/j.msec.2016.09.001. PubMed DOI
Jiang Y.-Y., Zhu Y.-J., Li H., Zhang Y.-G., Shen Y.-Q., Sun T.-W., Chen F. Preparation and enhanced mechanical properties of hybrid hydrogels comprising ultralong hydroxyapatite nanowires and sodium alginate. J. Colloid Interface Sci. 2017;497:266–275. doi: 10.1016/j.jcis.2017.03.032. PubMed DOI
Toti U.S., Aminabhavi T.M. Different viscosity grade sodium alginate and modified sodium alginate membranes in pervapo-ration separation of water + acetic acid and water + isopropanol mixtures. J. Memb. Sci. 2004;228:199–208. doi: 10.1016/j.memsci.2003.10.008. DOI
Davis T.A., Llanes F., Volesky B., Diaz-Pulido G., McCook L., Mucci A. 1H-NMR Study of Na Alginates Extracted from Sargassum spp. in Relation to Metal Biosorption. Appl. Biochem. Biotechnol. 2003;110:75–90. doi: 10.1385/ABAB:110:2:75. PubMed DOI
Bertolino V., Cavallaro G., Lazzara G., Merli M., Milioto S., Parisi F., Sciascia L. Effect of the Biopolymer Charge and the Nanoclay Morphology on Nanocomposite Materials. Ind. Eng. Chem. Res. 2016;55:7373–7380. doi: 10.1021/acs.iecr.6b01816. DOI
Kuo C.K., Ma P.X. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials. 2001;22:511–521. doi: 10.1016/S0142-9612(00)00201-5. PubMed DOI
Russo R., Malinconico M., Santagata G. Effect of Cross-Linking with Calcium Ions on the Physical Properties of Alginate Films. Biomacromolecules. 2007;8:3193–3197. doi: 10.1021/bm700565h. PubMed DOI
Li L., Fang Y., Vreeker R., Appelqvist I., Mendes E. Reexamining the egg-box model in calcium–Alginate gels with X-ray dif-fraction. Biomacromolecules. 2007;8:464–468. doi: 10.1021/bm060550a. PubMed DOI
Esmaeili A., Behzadi S. Performance comparison of two herbal and industrial medicines using nanoparticles with a starch/cellulose shell and alginate core for drug delivery: In vitro studies. Colloids Surf. B Biointerfaces. 2017;158:556–561. doi: 10.1016/j.colsurfb.2017.07.018. PubMed DOI
Sabbagh N., Akbari A., Arsalani N., Eftekhari-Sis B., Hamishekar H. Halloysite-based hybrid bionanocomposite hydrogels as potential drug delivery systems. Appl. Clay Sci. 2017;148:48–55. doi: 10.1016/j.clay.2017.08.009. DOI
Sandri G., Aguzzi C., Rossi S., Bonferoni M.C., Bruni G., Boselli C., Cornaglia A.I., Riva F., Viseras C., Caramella C., et al. Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomater. 2017;57:216–224. doi: 10.1016/j.actbio.2017.05.032. PubMed DOI
Schindelin J., Arganda-Carreras I., Frise E. Fiji: An open-source platform for biological-image analysis. Nature methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Rueden C.T., Schindelin J., Hiner M.C., Dezonia B.E., Walter A.E., Arena E.T., Eliceiri K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017;18:1–26. doi: 10.1186/s12859-017-1934-z. PubMed DOI PMC
Brun F., Mancini L., Kasae P., Favretto S., Dreossi D., Tromba G. Pore3D: A software library for quantitative analysis of porous media. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2010;615:326–332. doi: 10.1016/j.nima.2010.02.063. DOI
Brus J., Urbanova M., Czernek J., Pavelkova M., Kubova K., Vyslouzil J., Abbrent S., Konefal R., Horský J., Vetchy D., et al. Structure and Dynamics of Alginate Gels Cross-Linked by Polyvalent Ions Probed via Solid State NMR Spectroscopy. Biomacromolecules. 2017;18:2478–2488. doi: 10.1021/acs.biomac.7b00627. PubMed DOI
El Nokab M.E.H., van der Wel P.C. Use of solid-state NMR spectroscopy for investigating polysaccharide-based hydrogels: A review. Carbohydr. Polym. 2020;240:116276. doi: 10.1016/j.carbpol.2020.116276. PubMed DOI
Huamani-Palomino R., Córdova B.M., Pichilingue L.E.R., Venâncio T., Valderrama A. Functionalization of an Alginate-Based Material by Oxidation and Reductive Amination. Polymers. 2021;13:255. doi: 10.3390/polym13020255. PubMed DOI PMC
Shahbazi M., Jäger H., Ahmadi S.J., Lacroix M. Electron beam crosslinking of alginate/nanoclay ink to improve functional properties of 3D printed hydrogel for removing heavy metal ions. Carbohydr. Polym. 2020;240:116211. doi: 10.1016/j.carbpol.2020.116211. PubMed DOI
Oliveira S.M., Barrias C.C., Almeida I.F., Costa P.C., Pena Ferreira M.R., Bahia M.F., Barbosa M.A. Injectability of a Bone Filler System Based on Hydroxyapatite Microspheres and a Vehicle With in situ Gel-Forming Ability. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008;87:49–58. doi: 10.1002/jbm.b.31066. PubMed DOI
Douglas T.E.L., Schietse J., Zima A., Gorodzha S., Parakhonskiy B.V., KhaleNkow D., Shkarin R., Ivanova A., Baumbach T., Weinhardt V., et al. Novel self-gelling injectable hydrogel/alpha-TCP composites for bone regeneration: Physiochemical and micro-computer tomographical characterization. J. Biomed. Mater. Res. Part A. 2018;106:822–828. doi: 10.1002/jbm.a.36277. PubMed DOI
Pereira D.R., Canadas R.F., Silva-Correia J., da Silva Morais A., Oliveira M.B., Dias I.R., Mano J.F., Marques A.P., Reis R.L., Oliveira J.M. Injectable gellan-gum/hydroxyapatite-based bilayered hydrogel composites forosteochondral tissue re-generation. Appl. Mater. Today. 2018;12:309–321. doi: 10.1016/j.apmt.2018.06.005. DOI
Lourenço A.H., Neves N., Ribeiro-Machado C., Sousa S.R., Lamghari M., Barrias C.C., Cabral A.T., Barbosa M.A., Ribeiro C.C. Injectable hybrid system for strontium local delivery promotes bone regeneration in a rat critical-sized defect model. Sci. Rep. 2017;7:5098. doi: 10.1038/s41598-017-04866-4. PubMed DOI PMC
Moreau D., Villain A., Bachy M., Proudhon H., Ku D.N., Hannouche D., Petite H., Corté L. In vivo evaluation of the bone integration of coated poly (vi-nyl-alcohol) hydrogel fiber implants. J. Mater. Sci. Mater. Med. 2017;28:114. doi: 10.1007/s10856-017-5923-6. PubMed DOI
Liang T., Wu J., Li F., Huang Z., Pi Y., Miao G., Ren W., Liu T., Jiang Q., Guo L. Drug-loading three-dimensional scaffolds based on hydroxyapatite-sodium alginate for bone regeneration. J. Biomed. Mater. Res. A. 2021;109:219–231. doi: 10.1002/jbm.a.37018. PubMed DOI
Yuan H., Zheng X., Liu W., Zhang H., Shao J., Yao J., Mao C., Hui J., Fan D. A novel bovine serum albumin and sodium alginate hydrogel scaffold doped with hydroxyapatite nanowires for cartilage defects repair. Colloids Surfaces B Biointerfaces. 2020;192:111041. doi: 10.1016/j.colsurfb.2020.111041. PubMed DOI