Heat Shock Proteins 27, 70, and 110: Expression and Prognostic Significance in Colorectal Cancer
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
NU21J-03-00019
Czech Health Research Council
PROGRES Q28
Univerzita Karlova v Praze
PubMed
34503216
PubMed Central
PMC8431468
DOI
10.3390/cancers13174407
PII: cancers13174407
Knihovny.cz E-resources
- Keywords
- HSP110, HSP27, HSP70, colorectal carcinoma, heat shock protein, prognosis, survival,
- Publication type
- Journal Article MeSH
Heat shock proteins (HSPs) are evolutionarily conserved chaperones occurring in virtually all living organisms playing a key role in the maintenance of cellular homeostasis. They are constitutively expressed to prevent and repair protein damage following various physiological and environmental stressors. HSPs are overexpressed in various types of cancers to provide cytoprotective function, and they have been described to influence prognosis and response to therapy. Moreover, they have been used as a tumor marker in blood serum biochemistry and they represent a potentially promising therapeutic target. To clarify prognostic significance of two canonical HSPs (27 and 70) and less known HSP110 (previously known as HSP105) in colorectal carcinoma (CRC), we retrospectively performed HSP immunohistochemistry on tissue microarrays from formalin-fixed paraffin-embedded tumor tissue from 297 patients with known follow-up. Survival analysis (univariate Kaplan-Meier analysis with the log-rank test and multivariate Cox regression) revealed significantly shorter overall survival (OS, mean 5.54 vs. 7.07, p = 0.033) and borderline insignificantly shorter cancer specific survival (CSS, mean 6.3 vs. 7.87 years, p = 0.066) in patients with HSP70+ tumors. In the case of HSP27+ tumors, there was an insignificantly shorter OS (mean 6.36 vs. 7.13 years, p = 0.2) and CSS (mean 7.17 vs. 7.95 years, p = 0.2). HSP110 showed no significant impact on survival. Using Pearson's chi-squared test, there was a significant association of HSP27 and HSP70 expression with advanced cancer stage. HSP27+ tumors were more frequently mismatch-repair proficient and vice versa (p = 0.014), and they occurred more often in female patients and vice versa (p = 0.015). There was an enrichment of left sided tumors with HSP110+ compared to the right sided (p = 0.022). In multivariate Cox regression adjusted on the UICC stage, grade and right/left side; both HSPs 27 and 70 were not independent survival predictors (p = 0.616 & p = 0.586). In multivariate analysis, only advanced UICC stage (p = 0) and right sided localization (p = 0.04) were independent predictors of worse CSS. In conclusion, from all three HSPs examined in our study, only HSP70 expression worsened CRC prognosis, although stage-dependent. The contribution of this article may be seen as a large survival analysis of HSPs 27 and 70 and the largest analysis of HSP110 described in CRC.
See more in PubMed
Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2020. CA Cancer J. Clin. 2020;70:7–30. doi: 10.3322/caac.21590. PubMed DOI
Cronin K.A., Bs A.J.L., Scott S., Sherman R.L., Noone A.-M., Ms N.H., Henley S.J., Anderson R.N., Bs A.U.F., Ma J., et al. Annual Report to the Nation on the Status of Cancer, part I: National cancer statistics. Cancer. 2018;124:2785–2800. doi: 10.1002/cncr.31551. PubMed DOI PMC
Pockley A.G. Heat shock proteins, inflammation, and cardiovascular disease. Circulation. 2002;105:1012–1017. doi: 10.1161/hc0802.103729. PubMed DOI
Saini J., Sharma P.K. Clinical, Prognostic and Therapeutic Significance of Heat Shock Proteins in Cancer. Curr. Drug Targets. 2018;19:1478–1490. doi: 10.2174/1389450118666170823121248. PubMed DOI
Chakraborty P.K., Mustafi S.B. Heat Shock Proteins: Heating Up Skin Cancer Biology. J. Dermat. 2016;1:102. doi: 10.35248/2684-1436.16.1.102. DOI
Lanneau D., Brunet M., Frisan E., Solary E., Fontenay M., Garrido C. Heat shock proteins: Essential proteins for apoptosis regulation. J. Cell. Mol. Med. 2008;12:743–761. doi: 10.1111/j.1582-4934.2008.00273.x. PubMed DOI PMC
Chakafana G., Shonhai A. The Role of Non-Canonical HSP70s (HSP110/Grp170) in Cancer. Cells. 2021;10:254. doi: 10.3390/cells10020254. PubMed DOI PMC
Eseigneuric R., Emjahed H., Egobbo J., Ejoly A.-L., Berthenet K., Eshirley S., Egarrido C. Heat shock proteins as danger signals for cancer detection. Front. Oncol. 2011;1:37. doi: 10.3389/fonc.2011.00037. PubMed DOI PMC
Brierley J.D., Gospodarowicz M.K., Wittekind C. TNM Classification of Malignant Tumors. 8th ed. Wiley Blackwell; Hoboken, NJ, USA: 2017. pp. 73–76.
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2019. [(accessed on 1 November 2020)]. Available online: https://www.R-project.org/
Therneau T. A Package for Survival Analysis in R. Version 3.1–7. [(accessed on 1 November 2020)];2015 Available online: https://CRAN.R-project.org/package=survival.
Acunzo J., Katsogiannou M., Rocchi P. Small heat shock proteins HSP27 (HSPB1), αB-crystallin (HSPB5) and HSP22 (HSPB8) as regulators of cell death. Int. J. Biochem. Cell Biol. 2012;44:1622–1631. doi: 10.1016/j.biocel.2012.04.002. PubMed DOI
Têtu B., Brisson J., Landry J., Huot J. Prognostic significance of heat-shock protein-27 in node-positive breast carcinoma: An immunohistochemical study. Breast Cancer Res. Treat. 1995;36:93–97. doi: 10.1007/BF00690189. PubMed DOI
Giaginis C., Daskalopoulou S.S., Vgenopoulou S., Sfiniadakis I., Kouraklis G., E Theocharis S. Heat Shock Protein-27, -60 and -90 expression in gastric cancer: Association with clinicopathological variables and patient survival. BMC Gastroenterol. 2009;9:14. doi: 10.1186/1471-230X-9-14. PubMed DOI PMC
Zagorianakou N., Ioachim E., Mitselou A., Kitsou E., Zagorianakou P., Makrydimas G., Salmas M., Agnantis N.J. Immunohistochemical expression of heat shock protein 27, in normal hyperplastic and neoplastic endometrium: Correlation with estrogen and progesterone receptor status, p53, pRb and proliferation associated indices (PCNA, MIB1) Eur. J. Gynaecol. Oncol. 2003;24:299–304. PubMed
Feng J.-T., Liu Y.-K., Song H.-Y., Dai Z., Qin L.-X., Almofti M.R., Fang C.-Y., Lu H.-J., Yang P.-Y., Tang Z.-Y. Heat-shock protein 27: A potential biomarker for hepatocellular carcinoma identified by serum proteome analysis. Proteomics. 2005;5:4581–4588. doi: 10.1002/pmic.200401309. PubMed DOI
Wang R.-C., Huang C.-Y., Pan T.-L., Chen W.-Y., Ho C.-T., Liu T.-Z., Chang Y.-J. Proteomic Characterization of Annexin l (ANX1) and Heat Shock Protein 27 (HSP27) as Biomarkers for Invasive Hepatocellular Carcinoma Cells. PLoS ONE. 2015;10:e0139232. doi: 10.1371/journal.pone.0139232. PubMed DOI PMC
Storm F., Mahvi D.M., Gilchrist K.W. HSP-27 has no diagnostic or prognostic significance in prostate or bladder cancers. Urology. 1993;42:379–382. doi: 10.1016/0090-4295(93)90361-D. PubMed DOI
A Cornford P., Dodson A.R., Parsons K.F., Desmond A.D., Woolfenden A., Fordham M., Neoptolemos J., Ke Y., Foster C.S. Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res. 2000;60:7099–7105. PubMed
Glaessgen A., Jonmarker S., Lindberg A., Nilsson B., Lewensohn R., Ekman P., Valdman A., Egevad L. Heat shock proteins 27, 60 and 70 as prognostic markers of prostate cancer. APMIS. 2008;116:888–895. doi: 10.1111/j.1600-0463.2008.01051.x. PubMed DOI
Rocchi P., So A., Kojima S., Signaevsky M., Beraldi E., Fazli L., Hurtado-Coll A., Yamanaka K., Gleave M. Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer. Cancer Res. 2004;64:6595–6602. doi: 10.1158/0008-5472.CAN-03-3998. PubMed DOI
Thomas X., Campos L., Mounier C., Cornillon J., Flandrin P., Le Q.-H., Piselli S., Guyotat D. Expression of heat-shock proteins is associated with major adverse prognostic factors in acute myeloid leukemia. Leuk. Res. 2005;29:1049–1058. doi: 10.1016/j.leukres.2005.02.010. PubMed DOI
Assimakopoulou M. Human meningiomas: Immunohistochemical localization of progesterone receptor and heat shock protein 27 and absence of estrogen receptor and PS2. Cancer Detect. Prev. 2000;24:163–168. PubMed
Wang A., Liu X., Sheng S., Ye H., Peng T., Shi F., Crowe D.L., Zhou X. Dysregulation of heat shock protein 27 expression in oral tongue squamous cell carcinoma. BMC Cancer. 2009;9:167. doi: 10.1186/1471-2407-9-167. PubMed DOI PMC
Geisler J.P., E Tammela J., Manahan K.J., E Geisler H., A Miller G., Zhou Z., Wiemann M.C. HSP27 in patients with ovarian carcinoma: Still an independent prognostic indicator at 60 months follow-up. Eur. J. Gynaecol. Oncol. 2004;25:165–168. PubMed
Bauer K., Nitsche U., Slotta-Huspenina J., Drecoll E., Von Weyhern C.H., Rosenberg R., Höfler H., Langer R. High HSP27 and HSP70 expression levels are independent adverse prognostic factors in primary resected colon cancer. Cell. Oncol. 2012;35:197–205. doi: 10.1007/s13402-012-0079-3. PubMed DOI
Yu Z., Zhi J., Peng X., Zhong X., Xu A. Clinical significance of HSP27 expression in colorectal cancer. Mol. Med. Rep. 2010;3:953–958. doi: 10.3892/mmr.2010.372. PubMed DOI
Tweedle E.M., Khattak I., Ang C.W., Nedjadi T., Jenkins R., Park B.K., Kalirai H., Dodson A., Azadeh B., Terlizzo M., et al. Low molecular weight heat shock protein HSP27 is a prognostic indicator in rectal cancer but not colon cancer. Gut. 2010;59:1501–1510. doi: 10.1136/gut.2009.196626. PubMed DOI
Zhao L., Li Z.-G., Ding Y.-Q. Expression of HSP27 in colorectal carcinoma and its relationship with lymphatic metastasis. Nan Fang Yi Ke Da Xue Xue Bao. 2008;28:41–44. PubMed
Choi S.-K., Kam H., Kim K.-Y., Park S.I., Lee Y.-S. Targeting Heat Shock Protein 27 in Cancer: A Druggable Target for Cancer Treatment? Cancers. 2019;11:1195. doi: 10.3390/cancers11081195. PubMed DOI PMC
Katsogiannou M., Andrieu C., Baylot V., Baudot A., Dusetti N., Gayet O., Finetti P., Garrido C., Birnbaum D., Bertucci F., et al. The Functional Landscape of Hsp27 Reveals New Cellular Processes such as DNA Repair and Alternative Splicing and Proposes Novel Anticancer Targets. Mol. Cell. Proteom. 2014;13:3585–3601. doi: 10.1074/mcp.M114.041228. PubMed DOI PMC
Sakai A., Otani M., Miyamoto A., Yoshida H., Furuya E., Tanigawa N. Identification of phosphorylated serine-15 and -82 residues of HSPB1 in 5-fluorouracil-resistant colorectal cancer cells by proteomics. J. Proteom. 2012;75:806–818. doi: 10.1016/j.jprot.2011.09.023. PubMed DOI
Hayashi R., Ishii Y., Ochiai H., Matsunaga A., Endo T., Hasegawa H., Kitagawa Y. Suppression of heat shock protein 27 expression promotes 5-fluorouracil sensitivity in colon cancer cells in a xenograft model. Oncol. Rep. 2012;28:1269–1274. doi: 10.3892/or.2012.1935. PubMed DOI
Chatterjee S., Burns T.F. Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach. Int. J. Mol. Sci. 2017;18:1978. doi: 10.3390/ijms18091978. PubMed DOI PMC
Chen S.-F., Nieh S., Jao S.-W., Liu C.-L., Wu C.-H., Chang Y.-C., Yang C.-Y., Lin Y.-S. Quercetin suppresses drug-resistant spheres via the p38 MAPK–HSP27 apoptotic pathway in oral cancer cells. PLoS ONE. 2012;7:e49275. doi: 10.1371/journal.pone.0049275. PubMed DOI PMC
Gibert B., Hadchity E., Czekalla A., Aloy M.-T., Colas P., Rodriguez-Lafrasse C., Arrigo A.-P., Diaz-Latoud C. Inhibition of heat shock protein 27 (HSPB1) tumorigenic functions by peptide aptamers. Oncogene. 2011;30:3672–3681. doi: 10.1038/onc.2011.73. PubMed DOI
Heinrich J.-C., Tuukkanen A., Schroeder M., Fahrig T., Fahrig R. RP101 (brivudine) binds to heat shock protein HSP27 (HSPB1) and enhances survival in animals and pancreatic cancer patients. J. Cancer Res. Clin. Oncol. 2011;137:1349–1361. doi: 10.1007/s00432-011-1005-1. PubMed DOI PMC
Choi S.-H., Lee Y.-J., Seo W.D., Lee H.-J., Nam J.-W., Kim J., Seo E.-K., Lee Y.-S., Lee Y.J. Altered cross-linking of HSP27 by zerumbone as a novel strategy for overcoming hsp27-mediated radioresistance. Int. J. Radiat. Oncol. 2011;79:1196–1205. doi: 10.1016/j.ijrobp.2010.10.025. PubMed DOI
Asaum J., Matsuzaki H., Kawasak S., Kuroda M., Takeda Y., Kishi K., Hiraki Y. Effects of quercetin on the cell growth and the intracellular accumulation and retention of adriamycin. Anticancer Res. 2000;20:2477–2483. PubMed
Elattar T.M., Virji A.S. The inhibitory effect of curcumin, genistein, quercetin and cisplatin on the growth of oral cancer cells in vitro. Anticancer Res. 2000;20:1733–1738. PubMed
Hosokawa N., Hirayoshi K., Kudo H., Takechi H., Aoike A., Kawai K., Nagata K. Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoids. Mol. Cell. Biol. 1992;12:3490–3498. doi: 10.1128/MCB.12.8.3490. PubMed DOI PMC
Jacquemin G., Granci V., Gallouet A.S., Lalaoui N., Morle A., Iessi E., Morizot A., Garrido C., Guillaudeux T., Micheau O. Quercetin-mediated Mcl-1 and survivin downregulation restores TRAIL-induced apoptosis in non-Hodgkin’s lymphoma B cells. Haematologica. 2011;97:38–46. doi: 10.3324/haematol.2011.046466. PubMed DOI PMC
Knowles L.M., Zigrossi D.A., Tauber R.A., Hightower C., Milner J.A. Flavonoids suppress androgen-independent human prostate tumor proliferation. Nutr. Cancer. 2000;38:116–122. doi: 10.1207/S15327914NC381_16. PubMed DOI
Nagai N., Nakai A., Nagata K. Quercetin Suppresses Heat Shock Response by Down-Regulation of HSF1. Biochem. Biophys. Res. Commun. 1995;208:1099–1105. doi: 10.1006/bbrc.1995.1447. PubMed DOI
Kamada M., So A., Muramaki M., Rocchi P., Beraldi E., Gleave M. Hsp27 knockdown using nucleotide-based therapies inhibit tumor growth and enhance chemotherapy in human bladder cancer cells. Mol. Cancer Ther. 2007;6:299–308. doi: 10.1158/1535-7163.MCT-06-0417. PubMed DOI
Kumano M., Furukawa J., Shiota M., Zardan A., Zhang F., Beraldi E., Wiedmann R.M., Fazli L., Zoubeidi A., Gleave M.E. Cotargeting Stress-Activated Hsp27 and Autophagy as a Combinatorial Strategy to Amplify Endoplasmic Reticular Stress in Prostate Cancer. Mol. Cancer Ther. 2012;11:1661–1671. doi: 10.1158/1535-7163.MCT-12-0072. PubMed DOI PMC
Hsu H.-S., Lin J.-H., Huang W.-C., Hsu T.-W., Su K., Chiou S.-H., Tsai Y.-T., Hung S.-C. Chemoresistance of lung cancer stemlike cells depends on activation of Hsp27. Cancer. 2010;117:1516–1528. doi: 10.1002/cncr.25599. PubMed DOI
Lelj-Garolla B., Kumano M., Beraldi E., Nappi L., Rocchi P., Ionescu D.N., Fazli L., Zoubeidi A., Gleave M.E. Hsp27 Inhibition with OGX-427 Sensitizes Non–Small Cell Lung Cancer Cells to Erlotinib and Chemotherapy. Mol. Cancer Ther. 2015;14:1107–1116. doi: 10.1158/1535-7163.MCT-14-0866. PubMed DOI
Ravagnan L., Gurbuxani S., Susin S.A., Maisse C., Daugas E., Zamzami N., Mak T., Jäättelä M., Penninger J., Garrido C., et al. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat. Cell Biol. 2001;3:839–843. doi: 10.1038/ncb0901-839. PubMed DOI
Garg M., Kanojia D., Saini S., Suri S., Gupta A., Surolia A., Suri A. Germ cell-specific heat shock protein 70-2 is expressed in cervical carcinoma and is involved in the growth, migration, and invasion of cervical cells. Cancer. 2010;116:3785–3796. doi: 10.1002/cncr.25218. PubMed DOI
Garg M., Kanojia D., Seth A., Kumar R., Gupta A., Surolia A., Suri A. Heat-shock protein 70-2 (HSP70-2) expression in bladder urothelial carcinoma is associated with tumour progression and promotes migration and invasion. Eur. J. Cancer. 2010;46:207–215. doi: 10.1016/j.ejca.2009.10.020. PubMed DOI
Piszcz J., Bolkun Ł., Cichocka E., Galar M., Hołownia A., Kłoczko J. Prognostic relevance of HSP70 antigen and antibody measurement in patients with acute myeloid leukemia of intermediate and unfavorable cytogenetic risk. Pol. Arch. Intern. Med. 2014;124:165–172. doi: 10.20452/pamw.2184. PubMed DOI
Kocsis J., Madaras B., Tóth É.K., Füst G., Prohászka Z. Serum level of soluble 70-kD heat shock protein is associated with high mortality in patients with colorectal cancer without distant metastasis. Cell Stress Chaperones. 2010;15:143–151. doi: 10.1007/s12192-009-0128-7. PubMed DOI PMC
Lee H.W., Lee E.H., Kim S.-H., Roh M.S., Jung S.B., Choi Y.C. Heat shock protein 70 (HSP70) expression is associated with poor prognosis in intestinal type gastric cancer. Virchows Arch. 2013;463:489–495. doi: 10.1007/s00428-013-1461-x. PubMed DOI
Gunther S., Ostheimer C., Stangl S., Specht H.M., Mozes P., Jesinghaus M., Vordermark D., Combs S., Peltz F., Jung M.P., et al. Correlation of HSP70 Serum Levels with Gross Tumor Volume and Composition of Lymphocyte Subpopulations in Patients with Squamous Cell and Adeno Non-Small Cell Lung Cancer. Front. Immunol. 2015;6:556. doi: 10.3389/fimmu.2015.00556. PubMed DOI PMC
Tavassol F., Starke O.F., Kokemüller H., Wegener G., Müller-Tavassol C.C., Gellrich N.-C., Eckardt A. Prognostic significance of heat shock protein 70 (HSP70) in patients with oral cancer. Head Neck Oncol. 2011;3:10. doi: 10.1186/1758-3284-3-10. PubMed DOI PMC
Nakajima M., Kato H., Miyazaki T., Fukuchi M., Masuda N., Fukai Y., Sohda M., Ahmad F., Kuwano H. Tumor immune systems in esophageal cancer with special reference to heat-shock protein 70 and humoral immunity. Anticancer Res. 2009;29:1595–1606. PubMed
Pfister K., Radons J., Busch R., Tidball J.G., Pfeifer M., Freitag L., Feldmann H.-J., Milani V., Issels R., Multhoff G. Patient survival by hsp70 membrane phenotype. Cancer. 2007;110:926–935. doi: 10.1002/cncr.22864. PubMed DOI
Steiner K., Graf M., Hecht K., Reif S., Rossbacher L., Pfister K., Kolb H.-J., Schmetzer H.M., Multhoff G. High HSP70-membrane expression on leukemic cells from patients with acute myeloid leukemia is associated with a worse prognosis. Leukemia. 2006;20:2076–2079. doi: 10.1038/sj.leu.2404391. PubMed DOI
Kanazawa Y., Isomoto H., Oka M., Yano Y., Soda H., Shikuwa S., Takeshima F., Omagari K., Mizuta Y., Murase K., et al. Expression of Heat Shock Protein (Hsp) 70 and Hsp 40 in Colorectal Cancer. Med. Oncol. 2003;20:157–164. doi: 10.1385/MO:20:2:157. PubMed DOI
Gao G., Liu S., Yao Z., Zhan Y., Chen W., Liu Y. The Prognostic Significance of HSP70 in Patients with Colorectal Cancer Patients: A PRISMA-Compliant Meta-Analysis. BioMed Res. Int. 2021;2021:5526327. doi: 10.1155/2021/5526327. PubMed DOI PMC
Hwang T.S., Han H.S., Choi H.K., Lee Y.J., Kim Y.-J., Han M.-Y., Park Y.-M. Differential, stage-dependent expression of Hsp70, Hsp110 and Bcl-2 in colorectal cancer. J. Gastroenterol. Hepatol. 2003;18:690–700. doi: 10.1046/j.1440-1746.2003.03011.x. PubMed DOI
Cai M.-B., Wang X.-P., Zhang J.-X., Han H.-Q., Liu C.-C., Bei J.-X., Peng R.-J., Liang Y., Feng Q.-S., Wang H.-Y., et al. Expression of heat shock protein 70 in nasopharyngeal carcinomas: Different expression patterns correlate with distinct clinical prognosis. J. Transl. Med. 2012;10:96. doi: 10.1186/1479-5876-10-96. PubMed DOI PMC
Slaby O., Sobkova K., Svoboda M., Garajova I., Fabian P., Hrstka R., Nenutil R., Sachlova M., Kocakova I., Michalek J., et al. Significant overexpression of HSP110 gene during colorectal cancer progression. Oncol. Rep. 2009;21:1235–1241. doi: 10.3892/or_00000346. PubMed DOI
Berthenet K., Bokhari A., Lagrange A., Marcion G., Boudesco C., Causse S., De Thonel A., Svrcek M., Goloudina A.R., Dumont S., et al. HSP110 promotes colorectal cancer growth through STAT3 activation. Oncogene. 2017;36:2328–2336. doi: 10.1038/onc.2016.403. PubMed DOI
Berthenet K., Boudesco C., Collura A., Svrcek M., Richaud S., Hammann A., Causse S., Yousfi N., Wanherdrick K., Duplomb L., et al. Extracellular HSP110 skews macrophage polarization in colorectal cancer. Oncoimmunology. 2016;5:e1170264. doi: 10.1080/2162402X.2016.1170264. PubMed DOI PMC
Kim J.H., Kim K.-J., Rhee Y.-Y., Oh S., Cho N.-Y., Lee H.S., Kang G.H. Expression status of wild-type HSP110 correlates with HSP110 T17 deletion size and patient prognosis in microsatellite-unstable colorectal cancer. Mod. Pathol. 2013;27:443–453. doi: 10.1038/modpathol.2013.160. PubMed DOI
Oh H.J., Kim J.H., Lee T.H., Park H.E., Bae J.M., Lee H.S., Kang G.H. Dominant high expression of wild-type HSP110 defines a poor prognostic subgroup of colorectal carcinomas with microsatellite instability: A whole-section immunohistochemical analysis. APMIS. 2017;125:1076–1083. doi: 10.1111/apm.12770. PubMed DOI
Kim K.-J., Lee T.H., Kim J.H., Cho N.-Y., Kim W.H., Kang G.H. Deletion in HSP110 T17: Correlation with wild-type HSP110 expression and prognostic significance in microsatellite-unstable advanced gastric cancers. Hum. Pathol. 2017;67:109–118. doi: 10.1016/j.humpath.2017.08.001. PubMed DOI
Popat S., Hubner R., Houlston R. Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol. 2005;23:609–618. doi: 10.1200/JCO.2005.01.086. PubMed DOI
Kim J.H., Kang G.H. Molecular and prognostic heterogeneity of microsatellite-unstable colorectal cancer. World J. Gastroenterol. 2014;20:4230–4243. doi: 10.3748/wjg.v20.i15.4230. PubMed DOI PMC
Kimura A., Ogata K., Altan B., Yokobori T., Ide M., Mochiki E., Toyomasu Y., Kogure N., Yanoma T., Suzuki M., et al. Nuclear heat shock protein 110 expression is associated with poor prognosis and chemotherapy resistance in gastric cancer. Oncotarget. 2016;7:18415–18423. doi: 10.18632/oncotarget.7821. PubMed DOI PMC
Nakajima M., Kato H., Miyazaki T., Fukuchi M., Masuda N., Fukai Y., Sohda M., Inose T., Sakai M., Sano A., et al. Prognostic significance of heat shock protein 110 expression and T lymphocyte infiltration in esophageal cancer. Hepatogastroenterology. 2011;58:1555–1560. doi: 10.5754/hge09758. PubMed DOI
Ullmann R., Morbini P., Halbwedl I., Bongiovanni M., Gogg-Kammerer M., Papotti M., Gabor S., Renner H., Popper H.H. Protein expression profiles in adenocarcinomas and squamous cell carcinomas of the lung generated using tissue microarrays. J. Pathol. 2004;203:798–807. doi: 10.1002/path.1584. PubMed DOI
Fan G., Tu Y., Wu N., Xiao H. The expression profiles and prognostic values of HSPs family members in Head and neck cancer. Cancer Cell Int. 2020;20:220. doi: 10.1186/s12935-020-01296-7. PubMed DOI PMC
Gotoh K., Nonoguchi K., Higashitsuji H., Kaneko Y., Sakurai T., Sumitomo Y., Itoh K., Subjeck J.R., Fujita J. Apg-2 has a chaperone-like activity similar to HSP110 and is overexpressed in hepatocellular carcinomas. FEBS Lett. 2004;560:19–24. doi: 10.1016/S0014-5793(04)00034-1. PubMed DOI
Muchemwa F.C., Nakatsura T., Fukushima S., Nishimura Y., Kageshita T., Ihn H. Differential expression of heat shock protein 105 in melanoma and melanocytic naevi. Melanoma Res. 2008;18:166–171. doi: 10.1097/CMR.0b013e3282fe9a16. PubMed DOI
Shimizu Y., Yoshikawa T., Kojima T., Shoda K., Nosaka K., Mizuno S., Wada S., Fujimoto Y., Sasada T., Kohashi K., et al. Heat shock protein 105 peptide vaccine could induce antitumor immune reactions in a phase I clinical trial. Cancer Sci. 2019;110:3049–3060. doi: 10.1111/cas.14165. PubMed DOI PMC
Jagadish N., Parashar D., Gupta N., Agarwal S., Suri V., Kumar R., Suri V., Sadasukhi T.C., Gupta A., Ansari A.S., et al. Heat shock protein 70–2 (HSP70-2) is a novel therapeutic target for colorectal cancer and is associated with tumor growth. BMC Cancer. 2016;16:561. doi: 10.1186/s12885-016-2592-7. PubMed DOI PMC
Jourdan F., Sebbagh N., Comperat E., Mourra N., Flahault A., Olschwang S., Duval A., Hamelin R. Tissue microarray technology: Validation in colorectal carcinoma and analysis of p53, hMLH1, and hMSH2 immunohistochemical expression. Virchows Arch. 2003;443:115–121. doi: 10.1007/s00428-003-0833-z. PubMed DOI
Yahagi M., Okabayashi K., Hasegawa H., Tsuruta M., Kitagawa Y. The Worse Prognosis of Right-Sided Compared with Left-Sided Colon Cancers: A Systematic Review and Meta-analysis. J. Gastrointest. Surg. 2015;20:648–655. doi: 10.1007/s11605-015-3026-6. PubMed DOI