Applications of Carbon Nanotubes in the Internet of Things Era
Status PubMed-not-MEDLINE Language English Country Germany Media electronic
Document type Journal Article
PubMed
34510300
PubMed Central
PMC8435483
DOI
10.1007/s40820-021-00721-4
PII: 10.1007/s40820-021-00721-4
Knihovny.cz E-resources
- Keywords
- Actuators, Brain–machine interfaces, Carbon nanotubes, Energy storage, Sensors, Transistors,
- Publication type
- Journal Article MeSH
The post-Moore's era has boosted the progress in carbon nanotube-based transistors. Indeed, the 5G communication and cloud computing stimulate the research in applications of carbon nanotubes in electronic devices. In this perspective, we deliver the readers with the latest trends in carbon nanotube research, including high-frequency transistors, biomedical sensors and actuators, brain-machine interfaces, and flexible logic devices and energy storages. Future opportunities are given for calling on scientists and engineers into the emerging topics.
See more in PubMed
Perkel JM. The internet of things comes to the lab. Nature. 2017;542(7639):125–126. doi: 10.1038/542125a. PubMed DOI
R. Haight, W. Haensch, D. Friedman, ENGINEERING. solar-powering the internet of things. Science 353(6295), 124–125 (2016). 10.1126/science.aag0476 PubMed
Hittinger E, Jaramillo P. Internet of things: energy boon or bane? Science. 2019;364(6438):326–328. doi: 10.1126/science.aau8825. PubMed DOI
Hvistendahl M. China Pushes the 'Internet of Things'. Science. 2012;336(6086):1223–1223. doi: 10.1126/science.336.6086.1223. PubMed DOI
Shi QF, Dong BW, He TYY, Sun ZD, Zhu JX, et al. Progress in wearable electronics/photonics-Moving toward the era of artificial intelligence and internet of things. InfoMat. 2020;2(6):1131–1162. doi: 10.1002/inf2.12122. DOI
Cardenas JA, Andrews JB, Noyce SG, Franklin AD. Carbon nanotube electronics for IoT sensors. Nano Futures. 2020;4(1):012001. doi: 10.1088/2399-1984/ab5f20. DOI
Amram Bengio E, Senic D, Taylor LW, Tsentalovich DE, Chen P, et al. High efficiency carbon nanotube thread antennas. Appl. Phys. Lett. 2017;111(16):163109. doi: 10.1063/1.4991822. DOI
Amram Bengio E, Senic D, Taylor LW, Headrick RJ, King M, et al. Carbon nanotube thin film patch antennas for wireless communications. Appl. Phys. Lett. 2019;114(20):203102. doi: 10.1063/1.5093327. DOI
Gervasi B. Will carbon nanotube memory replace DRAM? IEEE Micro. 2019;39(2):45–51. doi: 10.1109/mm.2019.2897560. DOI
Sun Y, He W, Mao Z, Jiao H, Kursun V. Monolithic 3D carbon nanotube memory for enhanced yield and integration density. IEEE Trans. Circuits Syst. 2020;67(7):2431–2441. doi: 10.1109/tcsi.2020.2980074. DOI
Kanhaiya PS, Lau C, Hills G, Bishop MD, Shulaker MM. Carbon nanotube-based CMOS SRAM: 1 kbit 6T SRAM arrays and 10T SRAM cells. IEEE Trans. Electron Devices. 2019;66(12):5375–5380. doi: 10.1109/ted.2019.2945533. DOI
Wang X, Chang K-C, Zhang Z, Liu Q, Li L, et al. Performance enhancement and mechanism exploration of all-carbon-nanotube memory with hydroxylation and dehydration through supercritical carbon dioxide. Carbon. 2021;173(88):97–104. doi: 10.1016/j.carbon.2020.10.084. DOI
Qu TY, Sun Y, Chen ML, Liu ZB, Zhu QB, et al. A flexible carbon nanotube sen-memory device. Adv. Mater. 2020;32(9):1907288. doi: 10.1002/adma.201907288. PubMed DOI
Kim S, Amjadi M, Lee TI, Jeong Y, Kwon D, et al. Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube network-coated porous elastomer sponges for human interface and healthcare devices. ACS Appl. Mater. Interfaces. 2019;11(26):23639–23648. doi: 10.1021/acsami.9b07636. PubMed DOI
Choi G, Jang H, Oh S, Cho H, Yoo H, et al. A highly sensitive and stress-direction-recognizing asterisk-shaped carbon nanotube strain sensor. J. Mater. Chem. C. 2019;7(31):9504–9512. doi: 10.1039/c9tc02486g. DOI
Lee W, Koo H, Sun J, Noh J, Kwon KS, et al. A fully roll-to-roll gravure-printed carbon nanotube-based active matrix for multi-touch sensors. Sci. Rep. 2015;5(88):17707. doi: 10.1038/srep17707. PubMed DOI PMC
Zhao TY, Zhang DD, Qu TY, Fang LL, Zhu QB, et al. Flexible 64 x 64 pixel AMOLED displays driven by uniform carbon nanotube thin-film transistors. ACS Appl. Mater. Interfaces. 2019;11(12):11699–11705. doi: 10.1021/acsami.8b17909. PubMed DOI
Kim YC, Park SH, Lee CS, Chung TW, Cho E, et al. A 46-inch diagonal carbon nanotube field emission backlight for liquid crystal display. Carbon. 2015;91(88):304–310. doi: 10.1016/j.carbon.2015.04.093. DOI
McCarthy MA, Liu B, Donoghue EP, Kravchenko I, Kim DY, et al. Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science. 2011;332(6029):570–573. doi: 10.1126/science.1203052. PubMed DOI
Wang C, Zhang J, Ryu K, Badmaev A, De Arco LG, et al. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009;9(12):4285–4291. doi: 10.1021/nl902522f. PubMed DOI
Ho R, Lau C, Hills G, Shulaker MM. Carbon nanotube CMOS analog circuitry. IEEE Trans. Nanotechn. 2019;18(88):845–848. doi: 10.1109/tnano.2019.2902739. DOI
Suzuki D, Kawano Y. Flexible terahertz imaging systems with single-walled carbon nanotube films. Carbon. 2020;162(88):13–24. doi: 10.1016/j.carbon.2020.01.113. DOI
Gaviria Rojas WA, McMorrow JJ, Geier ML, Tang Q, Kim CH, et al. Solution-processed carbon nanotube true random number generator. Nano Lett. 2017;17(8):4976–4981. doi: 10.1021/acs.nanolett.7b02118. PubMed DOI
Sandhu A. Strictly nanotubes in Beijing. Nat. Nanotechnol. 2009;4(7):398–399. doi: 10.1038/nnano.2009.164. PubMed DOI
Feng C, Liu K, Wu J-S, Liu L, Cheng J-S, et al. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 2010;20(6):885–891. doi: 10.1002/adfm.200901960. DOI
Yu L, Shearer C, Shapter J. Recent development of carbon nanotube transparent conductive films. Chem. Rev. 2016;116(22):13413–13453. doi: 10.1021/acs.chemrev.6b00179. PubMed DOI
Chen D, Jiang K, Huang T, Shen G. Recent advances in fiber supercapacitors: materials, device configurations, and applications. Adv. Mater. 2020;32(5):1901806. doi: 10.1002/adma.201901806. PubMed DOI
Ishikawa FN, Chang HK, Ryu K, Chen PC, Badmaev A, et al. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano. 2009;3(1):73–79. doi: 10.1021/nn800434d. PubMed DOI
Chen P-C, Shen G, Sukcharoenchoke S, Zhou C. Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films. Appl. Phys. Lett. 2009;94(4):043113. doi: 10.1063/1.3069277. DOI
He Y, Jin H, Qiu S, Li Q. A novel strategy for high-performance transparent conductive films based on double-walled carbon nanotubes. Chem. Commun. 2017;53(20):2934–2937. doi: 10.1039/c6cc10252b. PubMed DOI
Roh E, Hwang BU, Kim D, Kim BY, Lee NE. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano. 2015;9(6):6252–6261. doi: 10.1021/acsnano.5b01613. PubMed DOI
Martinez PM, Ishteev A, Fahimi A, Velten J, Jurewicz I, et al. Silver nanowires on carbon nanotube aerogel sheets for flexible, transparent electrodes. ACS Appl. Mater. Interfaces. 2019;11(35):32235–32243. doi: 10.1021/acsami.9b06368. PubMed DOI
Goldt AE, Zaremba OT, Bulavskiy MO, Fedorov FS, Larionov KV, et al. Highly efficient bilateral doping of single-walled carbon nanotubes. J. Mater. Chem. C. 2021;9(13):4514–4521. doi: 10.1039/d0tc05996j. DOI
Zhang Q, Zhou W, Xia X, Li K, Zhang N, et al. Transparent and freestanding single-walled carbon nanotube films synthesized directly and continuously via a blown aerosol technique. Adv. Mater. 2020;32(39):2004277. doi: 10.1002/adma.202004277. PubMed DOI
Yu W, Liu CH, Fan SS. High water-absorbent and phase-change heat dissipation materials based on super-aligned cross-stack CNT films. Adv. Engin. Mater. 2019;21(5):1801216. doi: 10.1002/adem.201801216. DOI
Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science. 2010;327(5973):1603–1607. doi: 10.1126/science.1182383. PubMed DOI
Xiang L, Zhang H, Hu Y, Peng L-M. Carbon nanotube-based flexible electronics. J. Mater. Chem. C. 2018;6(29):7714–7727. doi: 10.1039/c8tc02280a. DOI
Ma Z, Huang Q, Xu Q, Zhuang Q, Zhao X, et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 2021;20(6):859–868. doi: 10.1038/s41563-020-00902-3. PubMed DOI
Kim DC, Shim HJ, Lee W, Koo JH, Kim DH. Material-based approaches for the fabrication of stretchable electronics. Adv. Mater. 2020;32(15):1902743. doi: 10.1002/adma.201902743. PubMed DOI
Qi K, Zhou Y, Ou K, Dai Y, You X, et al. Weavable and stretchable piezoresistive carbon nanotubes-embedded nanofiber sensing yarns for highly sensitive and multimodal wearable textile sensor. Carbon. 2020;170(88):464–476. doi: 10.1016/j.carbon.2020.07.042. DOI
Kim H, Kang TH, Ahn J, Han H, Park S, et al. Spirally wrapped carbon nanotube microelectrodes for fiber optoelectronic devices beyond geometrical limitations toward smart wearable E-textile applications. ACS Nano. 2020;14(15):17213–17223. doi: 10.1021/acsnano.0c07143. PubMed DOI
Matsuhisa N, Chen X, Bao Z, Someya T. Materials and structural designs of stretchable conductors. Chem. Soc. Rev. 2019;48(11):2946–2966. doi: 10.1039/c8cs00814k. PubMed DOI
Wu H, Huang Y, Xu F, Duan Y, Yin Z. Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability. Adv. Mater. 2016;28(45):9881–9919. doi: 10.1002/adma.201602251. PubMed DOI
Hong YJ, Jeong H, Cho KW, Lu N, Kim DH. Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics. Adv. Funct. Mater. 2019;29(19):1808247. doi: 10.1002/adfm.201808247. DOI
Lei T, Pochorovski I, Bao Z. Separation of semiconducting carbon nanotubes for flexible and stretchable electronics using polymer removable method. Acc. Chem. Res. 2017;50(4):1096–1104. doi: 10.1021/acs.accounts.7b00062. PubMed DOI
Oh E, Kim T, Yoon J, Lee S, Kim D, et al. Highly reliable liquid metal-solid metal contacts with a corrugated single-walled carbon nanotube diffusion barrier for stretchable electronics. Adv. Funct. Mater. 2018;28(51):1806014. doi: 10.1002/adfm.201806014. DOI
Lee J, Pyo S, Kwon DS, Jo E, Kim W, et al. Ultrasensitive strain sensor based on separation of overlapped carbon nanotubes. Small. 2019;15(12):1805120. doi: 10.1002/smll.201805120. PubMed DOI
Matsunaga M, Hirotani J, Kishimoto S, Ohno Y. High-output, transparent, stretchable triboelectric nanogenerator based on carbon nanotube thin film toward wearable energy harvesters. Nano Energy. 2020;67(88):104297. doi: 10.1016/j.nanoen.2019.104297. DOI
Liu Y, Pharr M, Salvatore GA. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano. 2017;11(10):9614–9635. doi: 10.1021/acsnano.7b04898. PubMed DOI
Lei T, Shao LL, Zheng YQ, Pitner G, Fang G, et al. Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes. Nat. Commun. 2019;10(1):2161. doi: 10.1038/s41467-019-10145-9. PubMed DOI PMC
Li T, Li Y, Zhang T. Materials, structures, and functions for flexible and stretchable biomimetic sensors. Acc. Chem. Res. 2019;52(2):288–296. doi: 10.1021/acs.accounts.8b00497. PubMed DOI
Sun F, Lu Q, Feng S, Zhang T. Flexible artificial sensory systems based on neuromorphic devices. ACS Nano. 2021;15(3):3875–3899. doi: 10.1021/acsnano.0c10049. PubMed DOI
Ma Y, Li H, Chen S, Liu Y, Meng Y, et al. Skin-like electronics for perception and interaction: materials, structural designs, and applications. Adv. Intell. Syst. 2020;3(4):2000108. doi: 10.1002/aisy.202000108. DOI
Zhang Q, Tan L, Chen Y, Zhang T, Wang W, et al. Human-like sensing and reflexes of graphene-based films. Adv. Sci. 2016;3(12):1600130. doi: 10.1002/advs.201600130. PubMed DOI PMC
Jung YH, Park B, Kim JU, Kim TI. Bioinspired electronics for artificial sensory systems. Adv. Mater. 2019;31(34):1803637. doi: 10.1002/adma.201803637. PubMed DOI
Bareket L, Waiskopf N, Rand D, Lubin G, David-Pur M, et al. Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas. Nano Lett. 2014;14(11):6685–6692. doi: 10.1021/nl5034304. PubMed DOI PMC
Liu Y, Wei N, Zeng Q, Han J, Huang H, et al. Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability. Adv. Opt. Mater. 2016;4(2):238–245. doi: 10.1002/adom.201500529. DOI
D. Berco, D. Shenp Ang, Recent progress in synaptic devices paving the way toward an artificial cogni‐retina for bionic and machine vision. Adv. Intell. Syst. 1(1), 1900003 (2019). 10.1002/aisy.201900003
Gu Y, Wang X, Gu W, Wu Y, Li T, et al. Flexible electronic eardrum. Nano Res. 2017;10(8):2683–2691. doi: 10.1007/s12274-017-1470-1. DOI
Orzechowska S, Mazurek A, Swislocka R, Lewandowski W. Electronic nose: recent developments in gas sensing and molecular mechanisms of graphene detection and other materials. Materials. 2019;13(1):80. doi: 10.3390/ma13010080. PubMed DOI PMC
Park SY, Kim Y, Kim T, Eom TH, Kim SY, et al. Chemoresistive materials for electronic nose: Progress, perspectives, and challenges. InfoMat. 2019;1(3):289–316. doi: 10.1002/inf2.12029. DOI
Zhu T, Zhang Y, Luo L, Zhao X. Facile fabrication of NiO-decorated double-layer single-walled carbon nanotube buckypaper for glucose detection. ACS Appl. Mater. Interfaces. 2019;11(11):10856–10861. doi: 10.1021/acsami.9b00803. PubMed DOI
Fikri NA, Adom AH, Shakaff AYMd, Ahmad MN, Abdullah AH, et al. Development of human sensory mimicking system. Sensor Lett. 2011;9(1):423–427. doi: 10.1166/sl.2011.1492. DOI
Hsiao LY, Jing L, Li KR, Yang HT, Li Y, et al. Carbon nanotube-integrated conductive hydrogels as multifunctional robotic skin. Carbon. 2020;161(88):784–793. doi: 10.1016/j.carbon.2020.01.109. DOI
Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin. Nat. Mater. 2016;15(9):937–950. doi: 10.1038/nmat4671. PubMed DOI
Wang X, Dong L, Zhang H, Yu R, Pan C, et al. Recent progress in electronic skin. Adv. Sci. 2015;2(10):1500169. doi: 10.1002/advs.201500169. PubMed DOI PMC
Aoki K, Ogihara N, Tanaka M, Haniu H, Saito N. Carbon nanotube-based biomaterials for orthopaedic applications. J. Mater. Chem. B. 2020;8(40):9227–9238. doi: 10.1039/d0tb01440k. PubMed DOI
Mathur V, Talapatra S, Kar S, Hennighausen Z. In vivo partial restoration of neural activity across severed mouse spinal cord bridged with ultralong carbon nanotubes. ACS Appl. BioMater. 2021;4(5):4071–4078. doi: 10.1021/acsabm.1c00248. PubMed DOI
Fang Y, Ouyang L, Zhang T, Wang C, Lu B, et al. Optimizing bifurcated channels within an anisotropic scaffold for engineering vascularized oriented tissues. Adv. Healthc. Mater. 2020;9(24):2000782. doi: 10.1002/adhm.202000782. PubMed DOI
Chen J, Wang L, Wang T, Li C, Han W, et al. Functionalized carbon nanotube-embedded poly(vinyl alcohol) microspheres for efficient removal of tumor necrosis factor-alpha. ACS Biomater. Sci. Eng. 2020;6(8):4722–4730. doi: 10.1021/acsbiomaterials.9b01916. PubMed DOI
Chen W, Yang S, Wei X, Yang Z, Liu D, et al. Construction of aptamer-siRNA chimera/PEI/5-FU/carbon nanotube/collagen membranes for the treatment of peritoneal dissemination of drug-resistant gastric cancer. Adv. Healthc. Mater. 2020;9(21):2001153. doi: 10.1002/adhm.202001153. PubMed DOI
Sobajima A, Okihara T, Moriyama S, Nishimura N, Osawa T, et al. Multiwall carbon nanotube composites as artificial joint materials. ACS Biomater. Sci. Eng. 2020;6(12):7032–7040. doi: 10.1021/acsbiomaterials.0c00916. PubMed DOI
Park S-C, Jeong HJ, Heo M, Shin JH, Ahn J-H. Carbon nanotube-based ion-sensitive field-effect transistors with an on-chip reference electrode toward wearable sodium sensing. ACS Appl. Electron. Mater. 2021;3(6):2580–2588. doi: 10.1021/acsaelm.1c00152. DOI
Nguyen T, Dinh T, Dau VT, Tran C-D, Phan H-P, et al. A wearable, bending-insensitive respiration sensor using highly oriented carbon nanotube film. IEEE Sens. J. 2021;21(6):7308–7315. doi: 10.1109/jsen.2020.3048236. DOI
Wan H, Cao Y, Lo LW, Zhao J, Sepulveda N, et al. Flexible carbon nanotube synaptic transistor for neurological electronic skin applications. ACS Nano. 2020;14(8):10402–10412. doi: 10.1021/acsnano.0c04259. PubMed DOI
Xu H, Xie Y, Zhu E, Liu Y, Shi Z, et al. Supertough and ultrasensitive flexible electronic skin based on nanocellulose/sulfonated carbon nanotube hydrogel films. J. Mater. Chem. A. 2020;8(13):6311–6318. doi: 10.1039/d0ta00158a. DOI
Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011;6(5):296–301. doi: 10.1038/nnano.2011.36. PubMed DOI
Kim K-H, Hong SK, Ha S-H, Li L, Lee HW, et al. Enhancement of linearity range of stretchable ultrasensitive metal crack strain sensor via superaligned carbon nanotube-based strain engineering. Mater. Horizons. 2020;7(10):2662–2672. doi: 10.1039/d0mh00806k. DOI
Zu G, Wang X, Kanamori K, Nakanishi K. Superhydrophobic highly flexible doubly cross-linked aerogel/carbon nanotube composites as strain/pressure sensors. J. Mater. Chem. B. 2020;8(22):4883–4889. doi: 10.1039/c9tb02953b. PubMed DOI
Xu XW, Chen YC, He P, Wang S, Ling K, et al. Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Res. 2021;14(8):2875–2883. doi: 10.1007/s12274-021-3536-3. DOI
Umapathi K, Vanitha V, Anbarasu L, Zivkovic M, Bacanin N, et al. Predictive data regression technique based carbon nanotube biosensor for efficient patient health monitoring system. J. Ambient Intell. Humanized Comput. 2021 doi: 10.1007/s12652-021-03063-6. DOI
Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, et al. Carbon nanotube actuators. Science. 1999;284(5418):1340–1344. doi: 10.1126/science.284.5418.1340. PubMed DOI
Baughman RH. Materials science. Playing nature's game with artificial muscles. Science. 2005;308(5718):63–65. doi: 10.1126/science.1099010. PubMed DOI
Miskin MZ, Cortese AJ, Dorsey K, Esposito EP, Reynolds MF, et al. Electronically integrated, mass-manufactured, microscopic robots. Nature. 2020;584(7822):557–561. doi: 10.1038/s41586-020-2626-9. PubMed DOI
Brooks AM, Strano MS. A conceptual advance that gives microrobots legs. Nature. 2020;584(7822):530–531. doi: 10.1038/d41586-020-02421-2. PubMed DOI
Hyeon JS, Park JW, Baughman RH, Kim SJ. Electrochemical graphene/carbon nanotube yarn artificial muscles. Sens. Actuators B. 2019;286(88):237–242. doi: 10.1016/j.snb.2019.01.140. DOI
Kim H, Lee JA, Ambulo CP, Lee HB, Kim SH, et al. Intelligently actuating liquid crystal elastomer-carbon nanotube composites. Adv. Funct. Mater. 2019;29(48):1905063. doi: 10.1002/adfm.201905063. DOI
Liu J, Gao Y, Wang H, Poling-Skutvik R, Osuji CO, et al. Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer–carbon nanotube composites. Adv. Intell. Syst. 2020;2(6):1900163. doi: 10.1002/aisy.201900163. DOI
Kim GH, Kim K, Lee E, An T, Choi W, et al. Recent progress on microelectrodes in neural interfaces. Materials. 2018;11(10):1995. doi: 10.3390/ma11101995. PubMed DOI PMC
Lu L, Fu X, Liew Y, Zhang Y, Zhao S, et al. Soft and MRI compatible neural electrodes from carbon nanotube fibers. Nano Lett. 2019;19(3):1577–1586. doi: 10.1021/acs.nanolett.8b04456. PubMed DOI
S. Waldert,(2016) Invasive vs. non-invasive neuronal signals for brain-machine interfaces: will one prevail? Front. Neurosci 10.3389/fnins.2016.00295 PubMed PMC
Alvarez NT, Buschbeck E, Miller S, Le AD, Gupta VK, et al. Carbon nanotube fibers for neural recording and stimulation. ACS Appl. Bio-Mater. 2020;3(9):6478–6487. doi: 10.1021/acsabm.0c00861. PubMed DOI
Chen N, Luo B, Patil AC, Wang J, Gammad GGL, et al. Nanotunnels within poly(3,4-ethylenedioxythiophene)-carbon nanotube composite for highly sensitive neural interfacing. ACS Nano. 2020;14(7):8059–8073. doi: 10.1021/acsnano.0c00672. PubMed DOI
Hu Y, Dominguez CM, Bauer J, Weigel S, Schipperges A, et al. Carbon-nanotube reinforcement of DNA-silica nanocomposites yields programmable and cell-instructive biocoatings. Nat. Commun. 2019;10(1):5522. doi: 10.1038/s41467-019-13381-1. PubMed DOI PMC
Kubota Y, Sohn J, Hatada S, Schurr M, Straehle J, et al. A carbon nanotube tape for serial-section electron microscopy of brain ultrastructure. Nat. Commun. 2018;9(1):437. doi: 10.1038/s41467-017-02768-7. PubMed DOI PMC
Lee HR, Kim CC, Sun JY. Stretchable ionics - a promising candidate for upcoming wearable devices. Adv. Mater. 2018;30(42):1704403. doi: 10.1002/adma.201704403. PubMed DOI
Andrews JB, Cardenas JA, Lim CJ, Noyce SG, Mullett J, et al. Fully printed and flexible carbon nanotube transistors for pressure sensing in automobile tires. IEEE Sens. J. 2018;18(19):7875–7880. doi: 10.1109/jsen.2018.2842139. DOI
He M, Croy RG, Essigmann JM, Swager TM. Chemiresistive carbon nanotube sensors for N-nitrosodialkylamines. ACS Sens. 2019;4(10):2819–2824. doi: 10.1021/acssensors.9b01532. PubMed DOI PMC
Gou P, Kraut ND, Feigel IM, Bai H, Morgan GJ, et al. Carbon nanotube chemiresistor for wireless pH sensing. Sci. Rep. 2014;4(88):4468. doi: 10.1038/srep04468. PubMed DOI PMC
Zhang L, He J, Liao Y, Zeng X, Qiu N, et al. A self-protective, reproducible textile sensor with high performance towards human–machine interactions. J. Mater. Chem. A. 2019;7(46):26631–26640. doi: 10.1039/c9ta10744d. DOI
Liu Y, Zhang F, Leng J, Fu K, Lu XL, et al. Remotely and sequentially controlled actuation of electroactivated carbon nanotube/shape memory polymer composites. Adv. Mater. Technol. 2019;4(12):1900600. doi: 10.1002/admt.201900600. DOI
Sweeney CB, Moran AG, Gruener JT, Strasser AM, Pospisil MJ, et al. Radio frequency heating of carbon nanotube composite materials. ACS Appl. Mater. Interfaces. 2018;10(32):27252–27259. doi: 10.1021/acsami.8b06268. PubMed DOI
Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science. Nature. 2018;559(7715):547–555. doi: 10.1038/s41586-018-0337-2. PubMed DOI
Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science. 2015;349(6245):255–260. doi: 10.1126/science.aaa8415. PubMed DOI
M. Umehara, H.S. Stein, D. Guevarra, P.F. Newhouse, D.A. Boyd et al.,(2019) Analyzing machine learning models to accelerate generation of fundamental materials insights. npj Comput. Mater. 5(1), 34
Kaufmann K, Zhu C, Rosengarten AS, Maryanovsky D, Harrington TJ, et al. Crystal symmetry determination in electron diffraction using machine learning. Science. 2020;367(6477):564–568. doi: 10.1126/science.aay3062. PubMed DOI
Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: generative models for matter engineering. Science. 2018;361(6400):360–365. doi: 10.1126/science.aat2663. PubMed DOI
Zhou Z, Li X, Zare RN. Optimizing Chemical Reactions with Deep Reinforcement Learning. ACS Cent Sci. 2017;3(12):1337–1344. doi: 10.1021/acscentsci.7b00492. PubMed DOI PMC
Li Z, Wang S, Xin H. Toward artificial intelligence in catalysis. Nat. Catal. 2018;1(9):641–642. doi: 10.1038/s41929-018-0150-1. DOI
Khabushev EM, Krasnikov DV, Zaremba OT, Tsapenko AP, Goldt AE, et al. Machine learning for tailoring optoelectronic properties of single-walled carbon nanotube films. J. Phys. Chem. Lett. 2019;10(21):6962–6966. doi: 10.1021/acs.jpclett.9b02777. PubMed DOI
Iakovlev VY, Krasnikov DV, Khabushev EM, Kolodiazhnaia JV, Nasibulin AG. Artificial neural network for predictive synthesis of single-walled carbon nanotubes by aerosol CVD method. Carbon. 2019;153(88):100–103. doi: 10.1016/j.carbon.2019.07.013. DOI
Kapse S, Janwari S, Waghmare UV, Thapa R. Energy parameter and electronic descriptor for carbon based catalyst predicted using QM/ML. Appl. Catal. B. 2021;286(88):119866. doi: 10.1016/j.apcatb.2020.119866. DOI
Ji Z-H, Zhang L, Tang D-M, Chen C-M, Nordling TEM, et al. High-throughput screening and machine learning for the efficient growth of high-quality single-wall carbon nanotubes. Nano Res. 2021 doi: 10.1007/s12274-021-3387-y. DOI
P. Nikolaev, D. Hooper, F. Webber, R. Rao, K. Decker et al., Autonomy in materials research: a case study in carbon nanotube growth. npj Comput. Mater. 2(1), 16031 (2016). 10.1038/npjcompumats.2016.31
Cao C, Zhou Y, Ubnoske S, Zang J, Cao Y, et al. Highly stretchable supercapacitors via crumpled vertically aligned carbon nanotube forests. Adv. Energy Mater. 2019;9(22):1900618. doi: 10.1002/aenm.201900618. DOI
Wang Y, Zhang Y, Wang G, Shi X, Qiao Y, et al. Direct graphene-carbon nanotube composite ink writing all-solid-state flexible microsupercapacitors with high areal energy density. Adv. Funct. Mater. 2020;30(16):1907284. doi: 10.1002/adfm.201907284. DOI
Zhang CJ, Park SH, Ronan O, Harvey A, Seral-Ascaso A, et al. Enabling flexible heterostructures for Li-ion battery anodes based on nanotube and liquid-phase exfoliated 2D gallium chalcogenide nanosheet colloidal solutions. Small. 2017;13(34):1701677. doi: 10.1002/smll.201701677. PubMed DOI
E.B. Pomerantseva, Francesco Feng, Xinliang Cui, Yi Gogotsi, Yury, Energy storage: The future enabled by nanomaterials. Science 366(6468), eaan8285 (2019). 10.1126/science.aan8285 PubMed
Mun TJ, Kim SH, Park JW, Moon JH, Jang Y, et al. Wearable energy generating and storing textile based on carbon nanotube yarns. Adv. Funct. Mater. 2020;30(23):2000411. doi: 10.1002/adfm.202000411. DOI
Kinloch IA, Suhr J, Lou J, Young RJ, Ajayan PM. Composites with carbon nanotubes and graphene: an outlook. Science. 2018;362(6414):547–553. doi: 10.1126/science.aat7439. PubMed DOI
Lv T, Yao Y, Li N, Chen T. Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes. Nano Today. 2016;11(5):644–660. doi: 10.1016/j.nantod.2016.08.010. DOI
Lyu W, Zhang W, Liu H, Liu Y, Zuo H, et al. Conjugated microporous polymer network grafted carbon nanotube fibers with tunable redox activity for efficient flexible wearable energy storage. Chem. Mater. 2020;32(19):8276–8285. doi: 10.1021/acs.chemmater.0c02089. DOI
Guo Z, Nie H, Yang Z, Hua W, Ruan C, et al. 3D CNTs/graphene-S-Al3Ni2 cathodes for high-sulfur-loading and long-life lithium-sulfur batteries. Adv. Sci. 2018;5(7):1800026. doi: 10.1002/advs.201800026. PubMed DOI PMC
Fang Z, Wang J, Wu H, Li Q, Fan S, et al. Progress and challenges of flexible lithium ion batteries. J. Power Sources. 2020;454(88):227932. doi: 10.1016/j.jpowsour.2020.227932. DOI
Hu L, La Mantia F, Wu H, Xie X, McDonough J, et al. Lithium-ion textile batteries with large areal mass loading. Adv. Energy Mater. 2011;1(6):1012–1017. doi: 10.1002/aenm.201100261. DOI
Yoon S, Lee S, Kim S, Park K-W, Cho D, et al. Carbon nanotube film anodes for flexible lithium ion batteries. J. Power Sources. 2015;279(88):495–501. doi: 10.1016/j.jpowsour.2015.01.013. DOI
Geng H, Peng Y, Qu L, Zhang H, Wu M. Structure design and composition engineering of carbon-based nanomaterials for lithium energy storage. Adv. Energy Mater. 2020;10(10):1903030. doi: 10.1002/aenm.201903030. DOI
Wan F, Huang S, Cao H, Niu Z. Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries. ACS Nano. 2020;14(6):6752–6760. doi: 10.1021/acsnano.9b10214. PubMed DOI
Shi S, Sun C, Yin X, Shen L, Shi Q, et al. FeP quantum dots confined in carbon-nanotube-grafted P-doped carbon octahedra for high-rate sodium storage and full-cell applications. Adv. Funct. Mater. 2020;30(10):1909283. doi: 10.1002/adfm.201909283. DOI
Zhang S, Wang G, Wang B, Wang J, Bai J, et al. 3D carbon nanotube network bridged hetero-structured Ni-Fe-S nanocubes toward high-performance lithium, sodium, and potassium storage. Adv. Funct. Mater. 2020;30(24):2001592. doi: 10.1002/adfm.202001592. DOI
Yin S, Jin Z, Miyake T. Wearable high-powered biofuel cells using enzyme/carbon nanotube composite fibers on textile cloth. Biosens. Bioelectron. 2019;141(88):111471. doi: 10.1016/j.bios.2019.111471. PubMed DOI
Hu C, Lin Y, Connell JW, Cheng HM, Gogotsi Y, et al. Carbon-based metal-free catalysts for energy storage and environmental remediation. Adv. Mater. 2019;31(13):1806128. doi: 10.1002/adma.201806128. PubMed DOI
Li X, Zhou J, Zhang J, Li M, Bi X, et al. Bamboo-like nitrogen-doped carbon nanotube forests as durable metal-free catalysts for self-powered flexible Li-CO2 batteries. Adv. Mater. 2019;31(39):1903852. doi: 10.1002/adma.201903852. PubMed DOI
Zhang C, Li H, Huang A, Zhang Q, Rui K, et al. Rational design of a flexible CNTs@PDMS film patterned by bio-inspired templates as a strain sensor and supercapacitor. Small. 2019;15(18):1805493. doi: 10.1002/smll.201805493. PubMed DOI
Zhou Y, Wang X, Acauan L, Kalfon-Cohen E, Ni X, et al. Ultrahigh-areal-capacitance flexible supercapacitor electrodes enabled by conformal P3MT on horizontally aligned carbon-nanotube arrays. Adv. Mater. 2019;31(30):1901916. doi: 10.1002/adma.201901916. PubMed DOI
Choi C, Lee JA, Choi AY, Kim YT, Lepro X, et al. Flexible supercapacitor made of carbon nanotube yarn with internal pores. Adv. Mater. 2014;26(13):2059–2065. doi: 10.1002/adma.201304736. PubMed DOI
Jeong JH, Park JW, Lee DW, Baughman RH, Kim SJ. Electrodeposition of alpha-MnO2/gamma-MnO2 on carbon nanotube for yarn supercapacitor. Sci. Rep. 2019;9(1):11271. doi: 10.1038/s41598-019-47744-x. PubMed DOI PMC
Gilshtein E, Flox C, Ali FSM, Mehrabimatin B, Fedorov FS, et al. Superior environmentally friendly stretchable supercapacitor based on nitrogen-doped graphene/hydrogel and single-walled carbon nanotubes. J. Energy Storage. 2020;30(88):101505. doi: 10.1016/j.est.2020.101505. DOI
Van Aken KL, Pérez CR, Oh Y, Beidaghi M, Joo Jeong Y, et al. High rate capacitive performance of single-walled carbon nanotube aerogels. Nano Energy. 2015;15(88):662–669. doi: 10.1016/j.nanoen.2015.05.028. DOI
Kim SK, Koo HJ, Liu J, Braun PV. Flexible and wearable fiber microsupercapacitors based on carbon nanotube-agarose gel composite electrodes. ACS Appl. Mater. Interfaces. 2017;9(23):19925–19933. doi: 10.1021/acsami.7b04753. PubMed DOI
Miao J, Lang Z, Xue T, Li Y, Li Y, et al. Revival of zeolite-templated nanocarbon materials: recent advances in energy storage and conversion. Adv. Sci. 2020;7(20):2001335. doi: 10.1002/advs.202001335. PubMed DOI PMC
J. Zhao, H. Lu, Y. Zhang, S. Yu, O.I. Malyi et al., Direct coherent multi-ink printing of fabric supercapacitors. Sci. Adv. 7(3), eabd6978 (2021). 10.1126/sciadv.abd6978 PubMed PMC
Salanne M, Rotenberg B, Naoi K, Kaneko K, Taberna PL, et al. Efficient storage mechanisms for building better supercapacitors. Nat. Energy. 2016;1(6):16070. doi: 10.1038/nenergy.2016.70. DOI
Zeng L, Qiu L, Cheng H-M. Towards the practical use of flexible lithium ion batteries. Energy Storage Mater. 2019;23(88):434–438. doi: 10.1016/j.ensm.2019.04.019. DOI
Guo F, Jiang Y, Xu Z, Xiao Y, Fang B, et al. Highly stretchable carbon aerogels. Nat. Commun. 2018;9(1):881. doi: 10.1038/s41467-018-03268-y. PubMed DOI PMC
Zheng S, Shi X, Das P, Wu ZS, Bao X. The road towards planar microbatteries and micro-supercapacitors: From 2D to 3D device geometries. Adv. Mater. 2019;31(50):1900583. doi: 10.1002/adma.201900583. PubMed DOI
Zhang X, Lu W, Zhou G, Li Q. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics. Adv. Mater. 2020;32(5):1902028. doi: 10.1002/adma.201902028. PubMed DOI
Wu Z, Liu K, Lv C, Zhong S, Wang Q, et al. Ultrahigh-energy density lithium-ion cable battery based on the carbon-nanotube woven macrofilms. Small. 2018;14(22):1800414. doi: 10.1002/smll.201800414. PubMed DOI
Wu Q, Yang L, Wang X, Hu Z. Carbon-based nanocages: a new platform for advanced energy storage and conversion. Adv. Mater. 2020;32(27):1904177. doi: 10.1002/adma.201904177. PubMed DOI
Gao X, Du X, Mathis TS, Zhang M, Wang X, et al. Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nat. Commun. 2020;11(1):6160. doi: 10.1038/s41467-020-19992-3. PubMed DOI PMC
Deng S, Zhu H, Wang G, Luo M, Shen S, et al. Boosting fast energy storage by synergistic engineering of carbon and deficiency. Nat. Commun. 2020;11(1):132. doi: 10.1038/s41467-019-13945-1. PubMed DOI PMC
Lima N, Baptista AC, Faustino BMM, Taborda S, Marques A, et al. Carbon threads sweat-based supercapacitors for electronic textiles. Sci. Rep. 2020;10(1):7703. doi: 10.1038/s41598-020-64649-2. PubMed DOI PMC
Hatakeyama-Sato K, Wakamatsu H, Yamagishi K, Fujie T, Takeoka S, et al. Ultrathin and stretchable rechargeable devices with organic polymer nanosheets conformable to skin surface. Small. 2019;15(13):1805296. doi: 10.1002/smll.201805296. PubMed DOI
Hager MD, Esser B, Feng X, Schuhmann W, Theato P, et al. Polymer-based batteries-flexible and thin energy storage systems. Adv. Mater. 2020;32(39):2000587. doi: 10.1002/adma.202000587. PubMed DOI
Mai W, Yu Q, Han C, Kang F, Li B. Self-healing materials for energy-storage devices. Adv. Funct. Mater. 2020;30(24):1909912. doi: 10.1002/adfm.201909912. DOI
Chen S, Qiu L, Cheng HM. Carbon-based fibers for advanced electrochemical energy storage devices. Chem. Rev. 2020;120(5):2811–2878. doi: 10.1021/acs.chemrev.9b00466. PubMed DOI
Zhan H, Zhang G, Bell JM, Tan VBC, Gu Y. High density mechanical energy storage with carbon nanothread bundle. Nat. Commun. 2020;11(1):1905. doi: 10.1038/s41467-020-15807-7. PubMed DOI PMC
Bai Y, Shen B, Zhang S, Zhu Z, Sun S, et al. Storage of mechanical energy based on carbon nanotubes with high energy density and power density. Adv. Mater. 2019;31(9):1800680. doi: 10.1002/adma.201800680. PubMed DOI
Kim SH, Haines CS, Li N, Kim KJ, Mun TJ, et al. Harvesting electrical energy from carbon nanotube yarn twist. Science. 2017;357(6353):773–778. doi: 10.1126/science.aam8771. PubMed DOI
Zhang L, He M, Hansen TW, Kling J, Jiang H, et al. Growth termination and multiple nucleation of single-wall carbon nanotubes evidenced by in situ transmission electron microscopy. ACS Nano. 2017;11(5):4483–4493. doi: 10.1021/acsnano.6b05941. PubMed DOI
Yang F, Zhao H, Wang W, Liu Q, Liu X, et al. Carbon-involved near-surface evolution of cobalt nanocatalysts: an in situ study. CCS Chem. 2021;3(1):154–167. doi: 10.31635/ccschem.020.202000595. DOI
Zhang X, Yang F, Tian D, Zhao H, Wang R, et al. Atomic Scale Evolution of Graphitic Shells Growth via Pyrolysis of Cobalt Phthalocyanine. Adv. Mater. Interfaces. 2020;7(23):2001112. doi: 10.1002/admi.202001112. DOI
Rao R, Liptak D, Cherukuri T, Yakobson BI, Maruyama B. In situ evidence for chirality-dependent growth rates of individual carbon nanotubes. Nat. Mater. 2012;11(3):213–216. doi: 10.1038/nmat3231. PubMed DOI
Yang X, Zhao X, Liu T, Yang F. Precise synthesis of carbon nanotubes and one-dimensional hybrids from templates. Chinese J. Chem. 2021;39(6):1726–1744. doi: 10.1002/cjoc.202000673. DOI
Bishop MD, Hills G, Srimani T, Lau C, Murphy D, et al. Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities. Nat. Electron. 2020;3(8):492–501. doi: 10.1038/s41928-020-0419-7. DOI
Headrick RJ, Tsentalovich DE, Berdegue J, Bengio EA, Liberman L, et al. Structure-property relations in carbon nanotube fibers by downscaling solution processing. Adv. Mater. 2018;30(9):1704482. doi: 10.1002/adma.201704482. PubMed DOI
Geier ML, McMorrow JJ, Xu W, Zhu J, Kim CH, et al. Solution-processed carbon nanotube thin-film complementary static random access memory. Nat. Nanotechnol. 2015;10(11):944–948. doi: 10.1038/nnano.2015.197. PubMed DOI
Liu K, Sun Y, Liu P, Lin X, Fan S, et al. Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors. Adv. Funct. Mater. 2011;21(14):2721–2728. doi: 10.1002/adfm.201100306. DOI
Zhong D, Zhang Z, Ding L, Han J, Xiao M, et al. Gigahertz integrated circuits based on carbon nanotube films. Nat. Electron. 2017;1(1):40–45. doi: 10.1038/s41928-017-0003-y. DOI
Wang C, Takei K, Takahashi T, Javey A. Carbon nanotube electronics–moving forward. Chem. Soc. Rev. 2013;42(7):2592–2609. doi: 10.1039/c2cs35325c. PubMed DOI
Zhu M, Xiao H, Yan G, Sun P, Jiang J, et al. Radiation-hardened and repairable integrated circuits based on carbon nanotube transistors with ion gel gates. Nat. Electron. 2020;3(10):622–629. doi: 10.1038/s41928-020-0465-1. DOI
Yang Y, Ding L, Han J, Zhang Z, Peng LM. High-performance complementary transistors and medium-scale integrated circuits based on carbon nanotube thin films. ACS Nano. 2017;11(4):4124–4132. doi: 10.1021/acsnano.7b00861. PubMed DOI
Han SJ, Tang J, Kumar B, Falk A, Farmer D, et al. High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes. Nat. Nanotechnol. 2017;12(9):861–865. doi: 10.1038/nnano.2017.115. PubMed DOI
.A. Gaviria Rojas, M.E. Beck, V.K. Sangwan, S. Guo, M.C. Hersam, Ohmic‐contact‐gated carbon nanotube transistors for high‐performance analog amplifiers. Adv. Mater. 8(88), 2100994 (2021). 10.1002/adma.202100994 PubMed
Liang Y, Xiao M, Wu D, Lin Y, Liu L, et al. Wafer-scale uniform carbon nanotube transistors for ultrasensitive and label-free detection of disease biomarkers. ACS Nano. 2020;14(7):8866–8874. doi: 10.1021/acsnano.0c03523. PubMed DOI
Xiang L, Zhang H, Dong G, Zhong D, Han J, et al. Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces. Nat. Electron. 2018;1(4):237–245. doi: 10.1038/s41928-018-0056-6. DOI
Ma C, Clark S, Liu Z, Liang L, Firdaus Y, et al. Solution-processed mixed-dimensional hybrid perovskite/carbon nanotube electronics. ACS Nano. 2020;14(4):3969–3979. doi: 10.1021/acsnano.9b07888. PubMed DOI
Su W, Yang DH, Cui JM, Wang FT, Wei XJ, et al. Ultrafast wafer-scale assembly of uniform and highly dense semiconducting carbon nanotube films for optoelectronics. Carbon. 2020;163(88):370–378. doi: 10.1016/j.carbon.2020.03.032. DOI
Zhang Y, Ng SW, Lu X, Zheng Z. Solution-processed transparent electrodes for emerging thin-film solar cells. Chem. Rev. 2020;120(4):2049–2122. doi: 10.1021/acs.chemrev.9b00483. PubMed DOI
Di J, Wang X, Xing Y, Zhang Y, Zhang X, et al. Dry-processable carbon nanotubes for functional devices and composites. Small. 2014;10(22):4606–4625. doi: 10.1002/smll.201401465. PubMed DOI
Zhang R, Zhang Y, Wei F. Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications. Chem. Soc. Rev. 2017;46(12):3661–3715. doi: 10.1039/c7cs00104e. PubMed DOI
Liu Q, Li M, Gu Y, Zhang Y, Wang S, et al. Highly aligned dense carbon nanotube sheets induced by multiple stretching and pressing. Nanoscale. 2014;6(8):4338–4344. doi: 10.1039/c3nr06704a. PubMed DOI
Zhu Z, Wei N, Cheng W, Shen B, Sun S, et al. Rate-selected growth of ultrapure semiconducting carbon nanotube arrays. Nat. Commun. 2019;10(1):4467. doi: 10.1038/s41467-019-12519-5. PubMed DOI PMC
Peng R, Pan YY, Li Z, Zhang SL, Wheeler AR, et al. Ionotronics based on horizontally aligned carbon nanotubes. Adv. Funct. Mater. 2020;30(38):2003177. doi: 10.1002/adfm.202003177. DOI
Magnin Y, Amara H, Ducastelle F, Loiseau A, Bichara C. Entropy-driven stability of chiral single-walled carbon nanotubes. Science. 2018;362(6411):212–215. doi: 10.1126/science.aat6228. PubMed DOI
Brown KA, Brittman S, Maccaferri N, Jariwala D, Celano U. Machine learning in nanoscience: big data at small scales. Nano Lett. 2020;20(1):2–10. doi: 10.1021/acs.nanolett.9b04090. PubMed DOI
Bai Y, Yue H, Wang J, Shen B, Sun S, et al. Super-durable ultralong carbon nanotubes. Science. 2020;369(6507):1104–1106. doi: 10.1126/science.aay5220. PubMed DOI
Bai Y, Zhang R, Ye X, Zhu Z, Xie H, et al. Carbon nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol. 2018;13(7):589–595. doi: 10.1038/s41565-018-0141-z. PubMed DOI
Liu L, Han J, Xu L, Zhou J, Zhao C, et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science. 2020;368(6493):850–856. doi: 10.1126/science.aba5980. PubMed DOI
Kreupl F. Carbon-nanotube computer scaled up. Nature. 2019;572(7771):588–589. doi: 10.1038/d41586-019-02519-2. PubMed DOI
Shulaker MM, Hills G, Park RS, Howe RT, Saraswat K, et al. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature. 2017;547(7661):74–78. doi: 10.1038/nature22994. PubMed DOI
Pi S, Li C, Jiang H, Xia W, Xin H, et al. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nat. Nanotechnol. 2018;14(1):35–39. doi: 10.1038/s41565-018-0302-0. PubMed DOI
Fuller EJ, Keene ST, Melianas A, Wang Z, Agarwal S, et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science. 2019;364(6440):570–574. doi: 10.1126/science.aaw5581. PubMed DOI
S. Ham, M. Kang, S. Jang, J. Jang, S. Choi et al., One-dimensional organic artificial multi-synapses enabling electronic textile neural network for wearable neuromorphic applications. Sci. Adv. 6(28), eaba1178 (2020). 10.1126/sciadv.aba1178 PubMed PMC
Sangwan VK, Hersam MC. Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 2020;15(7):517–528. doi: 10.1038/s41565-020-0647-z. PubMed DOI