Amyloid-β peptide dimers undergo a random coil to β-sheet transition in the aqueous phase but not at the neuronal membrane
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34544868
PubMed Central
PMC8488611
DOI
10.1073/pnas.2106210118
PII: 2106210118
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, amyloid-β, molecular dynamics, neuronal membrane, transition network,
- MeSH
- amyloid chemie MeSH
- amyloidní beta-protein chemie metabolismus MeSH
- buněčná membrána metabolismus MeSH
- G(M1) gangliosid metabolismus MeSH
- konformace proteinů MeSH
- lidé MeSH
- lipidové dvojvrstvy metabolismus MeSH
- multimerizace proteinu * MeSH
- neurony metabolismus MeSH
- simulace molekulární dynamiky MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amyloid MeSH
- amyloidní beta-protein MeSH
- G(M1) gangliosid MeSH
- lipidové dvojvrstvy MeSH
Mounting evidence suggests that the neuronal cell membrane is the main site of oligomer-mediated neuronal toxicity of amyloid-β peptides in Alzheimer's disease. To gain a detailed understanding of the mutual interference of amyloid-β oligomers and the neuronal membrane, we carried out microseconds of all-atom molecular dynamics (MD) simulations on the dimerization of amyloid-β (Aβ)42 in the aqueous phase and in the presence of a lipid bilayer mimicking the in vivo composition of neuronal membranes. The dimerization in solution is characterized by a random coil to β-sheet transition that seems on pathway to amyloid aggregation, while the interactions with the neuronal membrane decrease the order of the Aβ42 dimer by attenuating its propensity to form a β-sheet structure. The main lipid interaction partners of Aβ42 are the surface-exposed sugar groups of the gangliosides GM1. As the neurotoxic activity of amyloid oligomers increases with oligomer order, these results suggest that GM1 is neuroprotective against Aβ-mediated toxicity.
Central European Institute of Technology Masaryk University Brno 625 00 Czech Republic
Department of Physics Birzeit University 71939 Birzeit Palestine
Institute of Biological Information Processing Forschungszentrum Jülich 52425 Jülich Germany
Institute of Biological Information Processing Forschungszentrum Jülich 52425 Jülich Germany;
Institute of Chemistry University of Miskolc 3515 Miskolc Egyetemváros Hungary
Zobrazit více v PubMed
Barage S. H., Sonawane K. D., Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides 52, 1–18 (2015). PubMed
McLean C. A., et al. ., Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann. Neurol. 46, 860–866 (1999). PubMed
Kirkitadze M. D., Bitan G., Teplow D. B., Paradigm shifts in Alzheimer’s disease and other neurodegenerative disorders: The emerging role of oligomeric assemblies. J. Neurosci. Res. 69, 567–577 (2002). PubMed
Broersen K., Rousseau F., Schymkowitz J., The culprit behind amyloid beta peptide related neurotoxicity in Alzheimer’s disease: Oligomer size or conformation? Alzheimers Res. Ther. 2, 12 (2010). PubMed PMC
Müller-Schiffmann A., et al. ., Amyloid-β dimers in the absence of plaque pathology impair learning and synaptic plasticity. Brain 139, 509–525 (2016). PubMed
Brinkmalm G., et al. ., Identification of neurotoxic cross-linked amyloid-β dimers in the Alzheimer’s brain. Brain 142, 1441–1457 (2019). PubMed PMC
Bitan G., Teplow D. B., Rapid photochemical cross-linking—A new tool for studies of metastable, amyloidogenic protein assemblies. Acc. Chem. Res. 37, 357–364 (2004). PubMed
Ono K., Condron M. M., Teplow D. B., Structure-neurotoxicity relationships of amyloid beta-protein oligomers. Proc. Natl. Acad. Sci. U.S.A. 106, 14745–14750 (2009). PubMed PMC
O’Nuallain B., et al. ., Amyloid beta-protein dimers rapidly form stable synaptotoxic protofibrils. J. Neurosci. 30, 14411–14419 (2010). PubMed PMC
Vázquez de la Torre A., et al. ., Direct evidence of the presence of cross-linked a β dimers in the brains of Alzheimer’s disease patients. Anal. Chem. 90, 4552–4560 (2018). PubMed
Castello F., et al. ., Two-step amyloid aggregation: Sequential lag phase intermediates. Sci. Rep. 7, 40065 (2017). PubMed PMC
Yang J., et al. ., Direct observation of oligomerization by single molecule fluorescence reveals a multistep aggregation mechanism for the yeast prion protein ure2. J. Am. Chem. Soc. 140, 2493–2503 (2018). PubMed PMC
Nasica-Labouze J., et al. ., Amyloid β protein and Alzheimer’s disease: When computer simulations complement experimental studies. Chem. Rev. 115, 3518–3563 (2015). PubMed PMC
Nguyen P. H., et al. ., Amyloid oligomers: A joint experimental/computational perspective on Alzheimer’s disease, Parkinson’s disease, type II diabetes, and amyotrophic lateral sclerosis. Chem. Rev. 121, 2545–2647 (2021). PubMed PMC
Lee S. J. C., Nam E., Lee H. J., Savelieff M. G., Lim M. H., Towards an understanding of amyloid-β oligomers: Characterization, toxicity mechanisms, and inhibitors. Chem. Soc. Rev. 46, 310–323 (2017). PubMed
Owen M. C., et al. ., Effects of in vivo conditions on amyloid aggregation. Chem. Soc. Rev. 48, 3946–3996 (2019). PubMed
Korade Z., Kenworthy A. K., Lipid rafts, cholesterol, and the brain. Neuropharmacology 55, 1265–1273 (2008). PubMed PMC
Posse de Chaves E., Sipione S., Sphingolipids and gangliosides of the nervous system in membrane function and dysfunction. FEBS Lett. 584, 1748–1759 (2010). PubMed
Kao Y. C., Ho P. C., Tu Y. K., Jou I. M., Tsai K. J., Lipids and Alzheimer’s disease. Int. J. Mol. Sci. 21, 1505 (2020). PubMed PMC
Paul A., Samantray S., Anteghini M., Khaled M., Strodel B., Thermodynamics and kinetics of the amyloid-β peptide revealed by Markov state models based on MD data in agreement with experiment. Chem. Sci. (Camb.) 12, 6652–6669 (2021). PubMed PMC
Samantray S., Yin F., Kav B., Strodel B., Different force fields give rise to different amyloid aggregation pathways in molecular dynamics simulations. J. Chem. Inf. Model. 60, 6462–6475 (2020). PubMed
Strodel B., Amyloid aggregation simulations: Challenges, advances and perspectives. Curr. Opin. Struct. Biol. 67, 145–152 (2021). PubMed
Koldsø H., Shorthouse D., Hélie J., Sansom M. S., Lipid clustering correlates with membrane curvature as revealed by molecular simulations of complex lipid bilayers. PLOS Comput. Biol. 10, e1003911 (2014). PubMed PMC
Ingólfsson H. I., et al. ., Computational lipidomics of the neuronal plasma membrane. Biophys. J. 113, 2271–2280 (2017). PubMed PMC
Barz B., Wales D. J., Strodel B., A kinetic approach to the sequence-aggregation relationship in disease-related protein assembly. J. Phys. Chem. B 118, 1003–1011 (2014). PubMed PMC
Barz B., Liao Q., Strodel B., Pathways of amyloid-β aggregation depend on oligomer shape. J. Am. Chem. Soc. 140, 319–327 (2018). PubMed
Illig A. M., Strodel B., Performance of Markov state models and transition networks on characterizing amyloid aggregation pathways from MD data. J. Chem. Theory Comput. 16, 7825–7839 (2020). PubMed
Jämbeck J. P., Lyubartsev A. P., An extension and further validation of an all-atomistic force field for biological membranes. J. Chem. Theory Comput. 8, 2938–2948 (2012). PubMed
Ermilova I., Lyubartsev A. P., Extension of the slipids force field to polyunsaturated lipids. J. Phys. Chem. B 120, 12826–12842 (2016). PubMed
Egawa J., Pearn M. L., Lemkuil B. P., Patel P. M., Head B. P., Membrane lipid rafts and neurobiology: Age-related changes in membrane lipids and loss of neuronal function. J. Physiol. 594, 4565–4579 (2016). PubMed PMC
Pata V., Dan N., Effect of membrane characteristics on phase separation and domain formation in cholesterol-lipid mixtures. Biophys. J. 88, 916–924 (2005). PubMed PMC
Ohvo-Rekilä H., Ramstedt B., Leppimäki P., Slotte J. P., Cholesterol interactions with phospholipids in membranes. Prog. Lipid Res. 41, 66–97 (2002). PubMed
Coles M., Bicknell W., Watson A. A., Fairlie D. P., Craik D. J., Solution structure of amyloid beta-peptide(1-40) in a water-micelle environment. Is the membrane-spanning domain where we think it is? Biochemistry 37, 11064–11077 (1998). PubMed
Miyashita N., Straub J. E., Thirumalai D., Structures of β−amyloid peptide 1–40, 1–42, and 1–55 – the 672–726 fragment of app – in a membrane environment with implications for interactions with γ-secretase. J. Am. Chem. Soc. 131, 17843–17852 (2009). PubMed PMC
Strodel B., Lee J. W. L., Whittleston C. S., Wales D. J., Transmembrane structures for Alzheimer’s Aβ(1-42) oligomers. J. Am. Chem. Soc. 132, 13300–13312 (2010). PubMed
Nagel-Steger L., Owen M. C., Strodel B., An account of amyloid oligomers: Facts and figures obtained from experiments and simulations. ChemBioChem 17, 657–676 (2016). PubMed
Kakeshpour T., et al. ., A lowly populated, transient β-sheet structure in monomeric aβ1-42 identified by multinuclear NMR of chemical denaturation. Biophys. Chem. 270, 106531 (2020). PubMed PMC
Urbanc B., et al. ., Molecular dynamics simulation of amyloid beta dimer formation. Biophys. J. 87, 2310–2321 (2004). PubMed PMC
Côté S., Laghaei R., Derreumaux P., Mousseau N., Distinct dimerization for various alloforms of the amyloid-beta protein: Aβ1–40, β1–42, and β1–40(d23n). J. Phys. Chem. B 116, 4043–4055 (2012). PubMed
Man V. H., Nguyen P. H., Derreumaux P., High-resolution structures of the amyloid-β–42 dimers from the comparison of four atomistic force fields. J. Phys. Chem. B 121, 5977–5987 (2017). PubMed PMC
Mehrazma B., Rauk A., Exploring amyloid-β dimer structure using molecular dynamics simulations. J. Phys. Chem. A 123, 4658–4670 (2019). PubMed
Rauscher S., et al. ., Structural ensembles of intrinsically disordered proteins depend strongly on force field: A comparison to experiment. J. Chem. Theory Comput. 11, 5513–5524 (2015). PubMed
Lührs T., et al. ., 3D structure of Alzheimer’s amyloid-β (1-42) fibrils. Proc. Natl. Acad. Sci. U.S.A. 102, 17342–17347 (2005). PubMed PMC
Paravastu A. K., Leapman R. D., Yau W. M., Tycko R., Molecular structural basis for polymorphism in Alzheimer’s beta-amyloid fibrils. Proc. Natl. Acad. Sci. U.S.A. 105, 18349–18354 (2008). PubMed PMC
Tarus B., Straub J. E., Thirumalai D., Structures and free-energy landscapes of the wild type and mutants of the Aβ (21-30) peptide are determined by an interplay between intrapeptide electrostatic and hydrophobic interactions. J. Mol. Biol. 379, 815–829 (2008). PubMed PMC
Gremer L., et al. ., Fibril structure of amyloid-β(1-42) by cryo-electron microscopy. Science 358, 116–119 (2017). PubMed PMC
Rezaei-Ghaleh N., Parigi G., Zweckstetter M., Reorientational dynamics of amyloid-β from NMR spin relaxation and molecular simulation. J. Phys. Chem. Lett. 10, 3369–3375 (2019). PubMed PMC
Hong S., et al. ., Soluble Aβ oligomers are rapidly sequestered from brain ISF in vivo and bind GM1 ganglioside on cellular membranes. Neuron 82, 308–319 (2014). PubMed PMC
Kedia N., Almisry M., Bieschke J., Glucose directs amyloid-β into membrane-active oligomers. Phys. Chem. Chem. Phys. 19, 18036–18046 (2017). PubMed PMC
Ikeda K., Yamaguchi T., Fukunaga S., Hoshino M., Matsuzaki K., Mechanism of amyloid β-protein aggregation mediated by GM1 ganglioside clusters. Biochemistry 50, 6433–6440 (2011). PubMed
Matsuzaki K, Formation of toxic amyloid fibrils by amyloidβ protein on ganglioside clusters. Int. J. Alzheimers Dis. 2011, 956104 (2011). PubMed PMC
Cebecauer M., Hof M., Amaro M., Impact of GM1 on membrane-mediated aggregation/oligomerization of β-amyloid: Unifying view. Biophys. J. 113, 1194–1199 (2017). PubMed PMC
Sokolova T. V., Zakharova I. O., Furaev V. V., Rychkova M. P., Avrova N. F., Neuroprotective effect of ganglioside GM1 on the cytotoxic action of hydrogen peroxide and amyloid beta-peptide in PC12 cells. Neurochem. Res. 32, 1302–1313 (2007). PubMed
Kreutz F., et al. ., Amyloid-β induced toxicity involves ganglioside expression and is sensitive to GM1 neuroprotective action. Neurochem. Int. 59, 648–655 (2011). PubMed
Yang R., et al. ., Monosialoanglioside improves memory deficits and relieves oxidative stress in the hippocampus of rat model of Alzheimer’s disease. Neurol. Sci. 34, 1447–1451 (2013). PubMed
Lee J., et al. ., CHARMM-GUI input generator for NAMD, GROMACS, AMBER, openMM, and CHARMM/openMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405–413 (2016). PubMed PMC
Carballo-Pacheco M., Strodel B., Advances in the simulation of protein aggregation at the atomistic scale. J. Phys. Chem. B 120, 2991–2999 (2016). PubMed
Sengupta U., Carballo-Pacheco M., Strodel B., Automated Markov state models for molecular dynamics simulations of aggregation and self-assembly. J. Chem. Phys. 150, 115101 (2019). PubMed
Abraham M. J., et al. ., GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015).
Huang J., et al. ., CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017). PubMed PMC
Klauda J. B., et al. ., Update of the CHARMM all-atom additive force field for lipids: Validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010). PubMed PMC
Bussi G., Donadio D., Parrinello M., Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007). PubMed
Berendsen H. J., Postma J., van Gunsteren W. F., DiNola A., Haak J. R., Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).
Antila H., et al. ., Headgroup structure and cation binding in phosphatidylserine lipid bilayers. J. Phys. Chem. B 123, 9066–9079 (2019). PubMed
Zhang Y., Sagui C., Secondary structure assignment for conformationally irregular peptides: Comparison between DSSP, STRIDE and KAKSI. J. Mol. Graph. Model. 55, 72–84 (2015). PubMed
Möckel C., et al. ., Integrated NMR, fluorescence, and molecular dynamics benchmark study of protein mechanics and hydrodynamics. J. Phys. Chem. B 123, 1453–1480 (2019). PubMed
Bastian M., et al. ., Gephi: An open source software for exploring and manipulating networks. Proc. Third Int. ICWSM Conf. 8, 361–362 (2009).
Humphrey W., Dalke A., Schulten K., VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). PubMed