Radiation-induced gliomas represent H3-/IDH-wild type pediatric gliomas with recurrent PDGFRA amplification and loss of CDKN2A/B

. 2021 Sep 20 ; 12 (1) : 5530. [epub] 20210920

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34545083

Grantová podpora
23536 Cancer Research UK - United Kingdom

Odkazy

PubMed 34545083
PubMed Central PMC8452680
DOI 10.1038/s41467-021-25708-y
PII: 10.1038/s41467-021-25708-y
Knihovny.cz E-zdroje

Long-term complications such as radiation-induced second malignancies occur in a subset of patients following radiation-therapy, particularly relevant in pediatric patients due to the long follow-up period in case of survival. Radiation-induced gliomas (RIGs) have been reported in patients after treatment with cranial irradiation for various primary malignancies such as acute lymphoblastic leukemia (ALL) and medulloblastoma (MB). We perform comprehensive (epi-) genetic and expression profiling of RIGs arising after cranial irradiation for MB (n = 23) and ALL (n = 9). Our study reveals a unifying molecular signature for the majority of RIGs, with recurrent PDGFRA amplification and loss of CDKN2A/B and an absence of somatic hotspot mutations in genes encoding histone 3 variants or IDH1/2, uncovering diagnostic markers and potentially actionable targets.

Clinical Cooperation Unit Neuropathology German Cancer Research Center Heidelberg Germany

Clinical Cooperation Unit Pediatric Oncology German Cancer Research Center Heidelberg Germany

Department of Neuropathology Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen Stuttgart Tübingen University Hospital Tübingen Germany

Department of Neuropathology Institute of Pathology Heidelberg University Hospital Heidelberg Germany

Department of Neuropathology NN Burdenko Neurosurgical Institute Moscow Russia

Department of Neurosurgery Division of Pediatric Neurosurgery Tübingen University Hospital Tübingen Germany

Department of Pathology Motol University Hospital Charles University Prague Czech Republic

Department of Pediatric Hematology and Oncology Motol University Hospital Charles University Prague Czech Republic

Department of Pediatric Hematology Oncology Children's University Hospital Tübingen Germany

Department of Pediatric Oncology and Hematology Essen University Hospital Essen Germany

Department of Pediatric Oncology Hematology and Immunology Heidelberg University Hospital Heidelberg Germany

Division of Molecular Pathology and Division of Cancer Therapeutics The Institute of Cancer Research London United Kingdom

Division of Pediatric Glioma Research German Cancer Research Center Heidelberg Germany

Division of Pediatric Hematology and Oncology University Medical Center Goettingen Goettingen Germany

Division of Pediatric Neurooncology German Cancer Research Center Heidelberg Germany

Hopp Children's Cancer Center Heidelberg Heidelberg Germany

Morgan Adams Foundation Pediatric Brain Tumor Research Program Department of Pediatrics University of Colorado School of Medicine Aurora CO USA

Zobrazit více v PubMed

Taylor RE, et al. Results of a randomized study of preradiation chemotherapy versus radiotherapy alone for nonmetastatic medulloblastoma: The International Society of Paediatric Oncology/United Kingdom Children’s Cancer Study Group PNET-3 Study. J. Clin. Oncol. 2003;21:1581–91. doi: 10.1200/JCO.2003.05.116. PubMed DOI

Armstrong GT, et al. Reduction in late mortality among 5-year survivors of childhood cancer. New Engl. J. Med. 2016;374:833–42. doi: 10.1056/NEJMoa1510795. PubMed DOI PMC

Travis LB, et al. Second malignant neoplasms and cardiovascular disease following radiotherapy. J. Natl Cancer Inst. 2012;104:357–70. doi: 10.1093/jnci/djr533. PubMed DOI PMC

Christopherson KM, et al. Late toxicity following craniospinal radiation for early-stage medulloblastoma. Acta Oncol. 2014;53:471–80. doi: 10.3109/0284186X.2013.862596. PubMed DOI

Relling MV, et al. High incidence of secondary brain tumours after radiotherapy and antimetabolites. Lancet. 1999;354:34–9. doi: 10.1016/S0140-6736(98)11079-6. PubMed DOI

Brat DJ, et al. Molecular genetic alterations in radiation-induced astrocytomas. Am. J. Pathol. 1999;154:1431–8. doi: 10.1016/S0002-9440(10)65397-7. PubMed DOI PMC

Donson AM, et al. Unique molecular characteristics of radiation-induced glioblastoma. J. Neuropathol. Exp. Neurol. 2007;66:740–9. doi: 10.1097/nen.0b013e3181257190. PubMed DOI

Elsamadicy AA, Babu R, Kirkpatrick JP, Adamson DC. Radiation-induced malignant gliomas: a current review. World Neurosurg. 2015;83:530–42. doi: 10.1016/j.wneu.2014.12.009. PubMed DOI

Gessi M, et al. Radiation-induced glioblastoma in a medulloblastoma patient: a case report with molecular features. Neuropathology. 2008;28:633–9. PubMed

Hamasaki K, Nakamura H, Ueda Y, Makino K, Kuratsu J. Radiation-induced glioblastoma occurring 35 years after radiation therapy for medulloblastoma: case report. Brain Tumor Pathol. 2010;27:39–43. doi: 10.1007/s10014-009-0258-8. PubMed DOI

Madden JR, et al. Radiation-induced glioblastoma multiforme in children treated for medulloblastoma with characteristics of both medulloblastoma and glioblastoma multiforme. J. Pediatr. Hematol. Oncol. 2010;32:e272–8. doi: 10.1097/MPH.0b013e3181e51403. PubMed DOI

Menon G, Nair S, Rajesh BJ, Rao BR, Radhakrishnan VV. Malignant astrocytoma following radiotherapy for craniopharyngioma. J. Cancer Res. Ther. 2007;3:50–2. doi: 10.4103/0973-1482.31974. PubMed DOI

Nakao T, et al. Radiation-induced gliomas: a report of four cases and analysis of molecular biomarkers. Brain Tumor Pathol. 2017;34:149–154. doi: 10.1007/s10014-017-0292-x. PubMed DOI

Ng I, Tan CL, Yeo TT, Vellayappan B. Rapidly fatal radiation-induced glioblastoma. Cureus. 2017;9:e1336. PubMed PMC

Prasad G, Haas-Kogan DA. Radiation-induced gliomas. Expert Rev. Neurother. 2009;9:1511–7. doi: 10.1586/ern.09.98. PubMed DOI PMC

Romeike BF, Kim YJ, Steudel WI, Graf N. Diffuse high-grade gliomas as second malignant neoplasms after radio-chemotherapy for pediatric malignancies. Childs Nerv. Syst. 2007;23:185–93. doi: 10.1007/s00381-006-0199-z. PubMed DOI

Salvati M, et al. Radio-induced gliomas: 20-year experience and critical review of the pathology. J. Neurooncol. 2008;89:169–77. doi: 10.1007/s11060-008-9565-x. PubMed DOI

Walter AW, et al. Secondary brain tumors in children treated for acute lymphoblastic leukemia at St Jude Children’s Research Hospital. J. Clin. Oncol. 1998;16:3761–7. doi: 10.1200/JCO.1998.16.12.3761. PubMed DOI

Yamanaka, R., Hayano, A. & Kanayama, T. Radiation-induced gliomas: a comprehensive review and meta-analysis. Neurosurg. Rev.41, 719–731 (2016). PubMed

Lopez, G. Y. et al. The genetic landscape of gliomas arising after therapeutic radiation. Acta Neuropathol.137, 139–150 (2019). PubMed PMC

Paugh BS, et al. Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J. Clin. Oncol. 2010;28:3061–8. doi: 10.1200/JCO.2009.26.7252. PubMed DOI PMC

Phi, J. H. et al. Genomic analysis reveals secondary glioblastoma after radiotherapy in a subset of recurrent medulloblastomas. Acta Neuropathol135, 939–53 (2018). PubMed

Capper D, et al. DNA methylation-based classification of central nervous system tumours. Nature. 2018;555:469–474. doi: 10.1038/nature26000. PubMed DOI PMC

Hovestadt V, et al. Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature. 2014;510:537–41. doi: 10.1038/nature13268. PubMed DOI

Pajtler KW, et al. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell. 2015;27:728–43. doi: 10.1016/j.ccell.2015.04.002. PubMed DOI PMC

Sturm D, et al. New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell. 2016;164:1060–1072. doi: 10.1016/j.cell.2016.01.015. PubMed DOI PMC

Jones C, Perryman L, Hargrave D. Paediatric and adult malignant glioma: close relatives or distant cousins? Nat. Rev. Clin. Oncol. 2012;9:400–13. doi: 10.1038/nrclinonc.2012.87. PubMed DOI

Northcott PA, Pfister SM, Jones DT. Next-generation (epi)genetic drivers of childhood brain tumours and the outlook for targeted therapies. Lancet Oncol. 2015;16:e293–302. doi: 10.1016/S1470-2045(14)71206-9. PubMed DOI

Sturm D, et al. Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nat. Rev. Cancer. 2014;14:92–107. doi: 10.1038/nrc3655. PubMed DOI PMC

Buczkowicz P, et al. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat. Genet. 2014;46:451–6. doi: 10.1038/ng.2936. PubMed DOI PMC

Jones, C. & Baker, S. J. Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. Nat Rev Cancer14, 10.1038/nrc3811 (2014). PubMed PMC

Korshunov A, et al. H3-/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinct subtypes with associated oncogenic drivers. Acta Neuropathol. 2017;134:507–516. doi: 10.1007/s00401-017-1710-1. PubMed DOI

Sturm D, et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell. 2012;22:425–37. doi: 10.1016/j.ccr.2012.08.024. PubMed DOI

International Cancer Genome Consortium PedBrain Tumor Project. Recurrent MET fusion genes represent a drug target in pediatric glioblastoma. Nat. Med. 2016;22:1314–1320. doi: 10.1038/nm.4204. PubMed DOI

Jones DT, et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat. Genet. 2013;45:927–32. doi: 10.1038/ng.2682. PubMed DOI PMC

Jones DT, et al. Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene. 2009;28:2119–23. doi: 10.1038/onc.2009.73. PubMed DOI PMC

Agnihotri S, et al. Therapeutic radiation for childhood cancer drives structural aberrations of NF2 in meningiomas. Nat. Commun. 2017;8:186. doi: 10.1038/s41467-017-00174-7. PubMed DOI PMC

Bhuller KS, et al. Late mortality, secondary malignancy and hospitalisation in teenage and young adult survivors of Hodgkin lymphoma: report of the Childhood/Adolescent/Young Adult Cancer Survivors Research Program and the BC Cancer Agency Centre for Lymphoid Cancer. Br. J. Haematol. 2016;172:757–68. doi: 10.1111/bjh.13903. PubMed DOI

Inskip PD, et al. Radiation-related new primary solid cancers in the childhood cancer survivor study: comparative radiation dose response and modification of treatment effects. Int. J. Radiat. Oncol. Biol. Phys. 2016;94:800–7. doi: 10.1016/j.ijrobp.2015.11.046. PubMed DOI PMC

Morton, L. M. et al. Genome-Wide Association Study to identify susceptibility loci that modify radiation-related risk for breast cancer after childhood cancer. J. Natl Cancer Inst.109, djx058 (2017). PubMed PMC

Schwartz B, et al. Risk of second bone sarcoma following childhood cancer: role of radiation therapy treatment. Radiat. Environ. Biophys. 2014;53:381–90. PubMed PMC

van Dijk IW, et al. Risk of symptomatic stroke after radiation therapy for childhood cancer: a long-term follow-up cohort analysis. Int. J. Radiat. Oncol. Biol. Phys. 2016;96:597–605. doi: 10.1016/j.ijrobp.2016.03.049. PubMed DOI

Winther JF, et al. Childhood cancer survivor cohorts in Europe. Acta Oncol. 2015;54:655–68. doi: 10.3109/0284186X.2015.1008648. PubMed DOI

Bakst RL, et al. Reirradiation for recurrent medulloblastoma. Cancer. 2011;117:4977–82. doi: 10.1002/cncr.26148. PubMed DOI

Wetmore C, et al. Reirradiation of recurrent medulloblastoma: does clinical benefit outweigh risk for toxicity? Cancer. 2014;120:3731–7. doi: 10.1002/cncr.28907. PubMed DOI PMC

Konig L, et al. Secondary malignancy risk following proton vs. X-ray treatment of mediastinal malignant lymphoma: a comparative modeling study of thoracic organ-specific cancer risk. Front. Oncol. 2020;10:989. doi: 10.3389/fonc.2020.00989. PubMed DOI PMC

Newhauser WD, et al. The risk of developing a second cancer after receiving craniospinal proton irradiation. Phys. Med. Biol. 2009;54:2277–91. doi: 10.1088/0031-9155/54/8/002. PubMed DOI PMC

Dasu A, Toma-Dasu I, Olofsson J, Karlsson M. The use of risk estimation models for the induction of secondary cancers following radiotherapy. Acta Oncol. 2005;44:339–47. doi: 10.1080/02841860510029833. PubMed DOI

Schneider U, Zwahlen D, Ross D, Kaser-Hotz B. Estimation of radiation-induced cancer from three-dimensional dose distributions: Concept of organ equivalent dose. Int. J. Radiat. Oncol. Biol. Phys. 2005;61:1510–5. doi: 10.1016/j.ijrobp.2004.12.040. PubMed DOI

Zhang Q, et al. Secondary cancer risk after radiation therapy for breast cancer with different radiotherapy techniques. Sci. Rep. 2020;10:1220. doi: 10.1038/s41598-020-58134-z. PubMed DOI PMC

Worst BC, et al. Next-generation personalised medicine for high-risk paediatric cancer patients - The INFORM pilot study. Eur. J. Cancer. 2016;65:91–101. doi: 10.1016/j.ejca.2016.06.009. PubMed DOI

Harrabi SB, et al. Dosimetric advantages of proton therapy over conventional radiotherapy with photons in young patients and adults with low-grade glioma. Strahlenther. Onkol. 2016;192:759–769. doi: 10.1007/s00066-016-1005-9. PubMed DOI PMC

Jones DT, et al. Dissecting the genomic complexity underlying medulloblastoma. Nature. 2012;488:100–5. doi: 10.1038/nature11284. PubMed DOI PMC

Louis, D. N. et al. WHO Classification of Tumours of the Central Nervous System, (International Agency for Research on Cancer, 2016).

Merchant TE, et al. Proton versus photon radiotherapy for common pediatric brain tumors: comparison of models of dose characteristics and their relationship to cognitive function. Pediatr. Blood Cancer. 2008;51:110–7. doi: 10.1002/pbc.21530. PubMed DOI

Northcott PA, et al. The whole-genome landscape of medulloblastoma subtypes. Nature. 2017;547:311–317. doi: 10.1038/nature22973. PubMed DOI PMC

Taylor MD, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012;123:465–72. doi: 10.1007/s00401-011-0922-z. PubMed DOI PMC

Yock TI, et al. Long-term toxic effects of proton radiotherapy for paediatric medulloblastoma: a phase 2 single-arm study. Lancet Oncol. 2016;17:287–298. doi: 10.1016/S1470-2045(15)00167-9. PubMed DOI

Cahan WG, Woodard HQ, et al. Sarcoma arising in irradiated bone; report of 11 cases. Cancer. 1948;1:3–29. doi: 10.1002/1097-0142(194805)1:1<3::AID-CNCR2820010103>3.0.CO;2-7. PubMed DOI

Kleinschmidt-Demasters BK, Kang JS, Lillehei KO. The burden of radiation-induced central nervous system tumors: a single institution s experience. J. Neuropathol. Exp. Neurol. 2006;65:204–16. doi: 10.1097/01.jnen.0000205146.62081.29. PubMed DOI

Mistry M, et al. BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. J. Clin. Oncol. 2015;33:1015–22. doi: 10.1200/JCO.2014.58.3922. PubMed DOI PMC

Krieger MD, Gonzalez-Gomez I, Levy ML, McComb JG. Recurrence patterns and anaplastic change in a long-term study of pilocytic astrocytomas. Pediatr. Neurosurg. 1997;27:1–11. doi: 10.1159/000121218. PubMed DOI

Broniscer A, et al. Clinical and molecular characteristics of malignant transformation of low-grade glioma in children. J. Clin. Oncol. 2007;25:682–9. doi: 10.1200/JCO.2006.06.8213. PubMed DOI

Cavalli FMG, et al. Heterogeneity within the PF-EPN-B ependymoma subgroup. Acta Neuropathol. 2018;136:227–237. doi: 10.1007/s00401-018-1888-x. PubMed DOI PMC

Pajtler KW, et al. Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathol. 2018;136:211–226. doi: 10.1007/s00401-018-1877-0. PubMed DOI PMC

Deng MY, et al. Molecularly defined diffuse leptomeningeal glioneuronal tumor (DLGNT) comprises two subgroups with distinct clinical and genetic features. Acta Neuropathol. 2018;136:239–253. doi: 10.1007/s00401-018-1865-4. PubMed DOI

Sahm F, et al. Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathol. 2016;131:903–10. doi: 10.1007/s00401-015-1519-8. PubMed DOI

Alioto TS, et al. A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing. Nat. Commun. 2015;6:10001. doi: 10.1038/ncomms10001. PubMed DOI PMC

McPherson A, et al. deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput. Biol. 2011;7:e1001138. doi: 10.1371/journal.pcbi.1001138. PubMed DOI PMC

Ramaswamy V, et al. Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol. 2016;131:821–31. doi: 10.1007/s00401-016-1569-6. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Clinical and molecular study of radiation-induced gliomas

. 2024 Feb 07 ; 14 (1) : 3118. [epub] 20240207

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...