Remote Ischemic Preconditioning Reduces Marathon-Induced Oxidative Stress and Decreases Liver and Heart Injury Markers in the Serum

. 2021 ; 12 () : 731889. [epub] 20210906

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34552508

Clinical studies continue to provide evidence of organ protection by remote ischemic preconditioning (RIPC). However, there is lack of insight into impact of RIPC on exercise-induce changes in human organs' function. We here aimed to elucidate the effects of 10-day RIPC training on marathon-induced changes in the levels of serum markers of oxidative stress, and liver and heart damage. The study involved 18 male amateur runners taking part in a marathon. RIPC training was performed in the course of four cycles, by inflating and deflating a blood pressure cuff at 5-min intervals (RIPC group, n=10); the control group underwent sham training (n=8). The effects of RIPC on levels of oxidative stress, and liver and heart damage markers were investigated at rest after 10 consecutive days of training and after the marathon run. The 10-day RIPC training decreased the serum resting levels of C-reactive protein (CRP), alanine transaminase (ALT), γ-glutamyl transpeptidase (GGT), and malondialdehyde (MDA). After the marathon run, creatinine kinase MB (CK-MB), lactate dehydrogenase (LDH), cardiac troponin level (cTn), aspartate aminotransferase (AST), alkaline phosphatase (ALP), ALT, total bilirubin (BIL-T), and MDA levels were increased and arterial ketone body ratio (AKBR) levels were decreased in all participants. The changes were significantly diminished in the RIPC group compared with the control group. The GGT activity remained constant in the RIPC group but significantly increased in the control group after the marathon run. In conclusion, the study provides evidence for a protective effect of RIPC against liver and heart damage induced by strenuous exercise, such as the marathon.

Zobrazit více v PubMed

Alessio H. M., Goldfarb A. H., Cutler R. G. (1988). MDA content increases in fast- and slow-twitch skeletal muscle with intensity of exercise in a rat. Am. J. Phys. 255, C874–C877. 10.1152/ajpcell.1988.255.6.C874, PMID: PubMed DOI

Arakawa K., Hosono A., Shibata K., Ghadimi R., Fuku M., Goto C., et al. . (2016). Changes in blood biochemical markers before, during, and after a 2-day ultramarathon. Open Access J. Sports Med. 7, 43–50. 10.2147/OAJSM.S97468, PMID: PubMed DOI PMC

Arvola O., Haapanen H., Herajärvi J., Anttila T., Puistola U., Karihtala P., et al. . (2016). Remote ischemic preconditioning attenuates oxidative stress during cardiopulmonary bypass. Heart Surg. Forum 19, E192–E197. 10.1532/hsf.1590, PMID: PubMed DOI

Banfi G., Colombini A., Lombardi G., Lubkowska A. (2012). Metabolic markers in sports medicine. Adv. Clin. Chem. 56, 1–54. 10.1016/b978-0-12-394317-0.00015-7, PMID: PubMed DOI

Cao Z., Shen R., Zhang X., Cheng G., Yan Z. (2017). Effects of remote ischemic preconditioning on acute myocardial injury in patients undergoing valve replacement. Ir. J. Med. Sci. 186, 889–893. 10.1007/s11845-016-1521-8, PMID: PubMed DOI

Caru M., Levesque A., Lalonde F., Curnier D. (2019). An overview of ischemic preconditioning in exercise performance: a systematic review. J. Sport Health Sci. 8, 355–369. 10.1016/j.jshs.2019.01.008, PMID: PubMed DOI PMC

Chen M., Zhang M., Zhang X., Li J., Wang Y., Fan Y., et al. . (2015). Limb ischemic preconditioning protects endothelium from oxidative stress by enhancing nrf2 translocation and upregulating expression of antioxidases. PLoS One 10:e0128455. 10.1371/journal.pone.0128455, PMID: PubMed DOI PMC

Cocking S., Landman T., Benson M., Lord R., Jones H., Gaze D., et al. . (2017). The impact of remote ischemic preconditioning on cardiac biomarker and functional response to endurance exercise. Scand. J. Med. Sci. Sports 27, 1061–1069. 10.1111/sms.12724, PMID: PubMed DOI

Cocking S., Wilson M. G., Nichols D., Cable N. T., Green D. J., Thijssen D. H. J., et al. . (2018). Is there an optimal ischemic-preconditioning dose to improve cycling performance? Int. J. Sports Physiol. Perform. 13, 274–282. 10.1123/ijspp.2017-0114, PMID: PubMed DOI

Davies K. J., Quintanilha A. T., Brooks G. A., Packer L. (1982). Free radicals and tissue damage produced by exercise. Biochem. Biophys. Res. Commun. 107, 1198–1205. 10.1016/S0006-291X(82)80124-1, PMID: PubMed DOI

De Paz J. A., Villa J. G., Lopez P., Gonzalez-Gallego J. (1995). Effects of long-distance running on serum bilirubin. Med. Sci. Sports Exerc. 27, 1590–1594. 10.1249/00005768-199512000-00002, PMID: PubMed DOI

Drozdz R., Parmentier C., Hachad H., Leroy P., Siest G., Wellman M. (1998). Gamma-glutamyltransferase dependent generation of reactive oxygen species from a glutathione/transferrin system. Free Radic. Biol. Med. 25, 786–792. 10.1016/S0891-5849(98)00127-0, PMID: PubMed DOI

Eijsvogels T. M., Fernandez A. B., Thompson P. D. (2016). Are there deleterious cardiac effects of acute and chronic endurance exercise? Physiol. Rev. 96, 99–125. 10.1152/physrev.00029.2014, PMID: PubMed DOI PMC

El Messaoudi S., Vissers A., Thijssen D., Riksen N. P., Rongen G. A. (2013). The effect of remote ischemic preconditioning on exercise-induced plasma troponin I appearance in healthy volunteers. Int. J. Cardiol. 168, 1612–1613. 10.1016/j.ijcard.2013.01.029, PMID: PubMed DOI

Fallon K. E., Sivyer G., Sivyer K., Dare A. (1999). The biochemistry of runners in a 1600 km ultramarathon. Br. J. Sports Med. 33, 264–269. 10.1136/bjsm.33.4.264, PMID: PubMed DOI PMC

Faul F., Erdfelder E., Lang A. G., Buchner A. (2007). G*power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191. 10.3758/BF03193146, PMID: PubMed DOI

Fortescue E. B., Shin A. Y., Greenes D. S., Mannix R. C., Agarwal S., Feldman B. J., et al. . (2007). Cardiac troponin increases among runners in the Boston Marathon. Ann. Emerg. Med. 49, 137.e131–143.e131. 10.1016/j.annemergmed.2006.09.024, PMID: PubMed DOI

Gomez-Cabrera M. C., Martinez A., Santangelo G., Pallardo F. V., Sastre J., Vina J. (2006). Oxidative stress in marathon runners: interest of antioxidant supplementation. Br. J. Nutr. 96(Suppl. 1), S31–S33. 10.1079/bjn20061696, PMID: PubMed DOI

Griffin P. J., Ferguson R. A., Gissane C., Bailey S. J., Patterson S. D. (2018). Ischemic preconditioning enhances critical power during a 3 minute all-out cycling test. J. Sports Sci. 36, 1038–1043. 10.1080/02640414.2017.1349923, PMID: PubMed DOI

Kaleta-Duss A. M., Lewicka-Potocka Z., Dabrowska-Kugacka A., Raczak G., Lewicka E. (2020). Myocardial injury and overload among amateur marathoners as indicated by changes in concentrations of cardiovascular biomarkers. Int. J. Environ. Res. Public Health 17:6191. 10.3390/ijerph17176191, PMID: PubMed DOI PMC

Kang S. J., Kim D., Park H. E., Chung G. E., Choi S. H., Choi S. Y., et al. . (2013). Elevated serum bilirubin levels are inversely associated with coronary artery atherosclerosis. Atherosclerosis 230, 242–248. 10.1016/j.atherosclerosis.2013.06.021, PMID: PubMed DOI

Kawamura T., Muraoka I. (2018). Exercise-induced oxidative stress and the effects of antioxidant intake from a physiological viewpoint. Antioxidants 7:119. 10.3390/antiox7090119, PMID: PubMed DOI PMC

Kratz A., Lewandrowski K. B., Siegel A. J., Chun K. Y., Flood J. G., Van Cott E. M., et al. . (2002). Effect of marathon running on hematologic and biochemical laboratory parameters, including cardiac markers. Am. J. Clin. Pathol. 118, 856–863. 10.1309/14TY-2TDJ-1X0Y-1V6V, PMID: PubMed DOI

Lippi G., Schena F., Montagnana M., Salvagno G. L., Banfi G., Guidi G. C. (2011). Significant variation of traditional markers of liver injury after a half-marathon run. Eur. J. Intern. Med. 22, e36–e38. 10.1016/j.ejim.2011.02.007, PMID: PubMed DOI

Liu X., Cao L., Zhang T., Guo R., Lin W. (2019). Effect of remote ischemic preconditioning in patients undergoing hepatectomy with portal triad clamping: a randomized controlled trial. Anesth. Analg. 129, 1742–1748. 10.1213/ANE.0000000000004434, PMID: PubMed DOI

Maxwell J. D., Carter H. H., Hellsten Y., Miller G. D., Sprung V. S., Cuthbertson D. J., et al. . (2019). Seven-day remote ischaemic preconditioning improves endothelial function in patients with type 2 diabetes mellitus: a randomised pilot study. Eur. J. Endocrinol. 181, 659–669. 10.1530/EJE-19-0378, PMID: PubMed DOI

Mieszkowski J., Stankiewicz B., Kochanowicz A., Niespodzinski B., Borkowska A., Antosiewicz J. (2020). Effect of ischemic preconditioning on marathon-induced changes in serum exerkine levels and inflammation. Front. Physiol. 11:571220. 10.3389/fphys.2020.571220, PMID: PubMed DOI PMC

Paull E. J., Van Guilder G. P. (2019). Remote ischemic preconditioning increases accumulated oxygen deficit in middle-distance runners. J. Appl. Physiol. 126, 1193–1203. 10.1152/japplphysiol.00585.2018, PMID: PubMed DOI

Pinheiro D. F., Fontes B., Shimazaki J. K., Heimbecker A. M., Jacysyn J. E. F., Rasslan S., et al. . (2016). Ischemic preconditioning modifies mortality and inflammatory response. Acta Cir. Bras. 31, 1–7. 10.1590/S0102-865020160010000001, PMID: PubMed DOI

Rakic M., Patrlj L., Amic F., Aralica G., Grgurevic I. (2018). Comparison of hepatoprotective effect from ischemia-reperfusion injury of remote ischemic preconditioning of the liver vs local ischemic preconditioning of the liver during human liver resections. Int. J. Surg. 54, 248–253. 10.1016/j.ijsu.2018.05.001, PMID: PubMed DOI

Reid M. B., Stokić D. S., Koch S. M., Khawli F. A., Leis A. A. (1994). N-acetylcysteine inhibits muscle fatigue in humans. J. Clin. Invest. 94, 2468–2474. 10.1172/JCI117615, PMID: PubMed DOI PMC

Robertson F. P., Goswami R., Wright G. P., Imber C., Sharma D., Malago M., et al. . (2017). Remote ischaemic preconditioning in orthotopic liver transplantation (RIPCOLT trial): a pilot randomized controlled feasibility study. HPB 19, 757–767. 10.1016/j.hpb.2017.05.005, PMID: PubMed DOI

Rosales X. Q., Chu M. L., Shilling C., Wall C., Pastores G. M., Mendell J. R. (2008). Fidelity of gamma-glutamyl transferase (GGT) in differentiating skeletal muscle from liver damage. J. Child Neurol. 23, 748–751. 10.1177/0883073808314365, PMID: PubMed DOI

Shimada H., Endo I., Takahashi T., Togo S. (1997). Pathophysiology of major hepatic resection and benefits of preoperative portal embolization in preventing hepatic failure. J. Hepato-Biliary-Pancreat. Surg. 4, 384–390. 10.1007/BF02488970 DOI

Shin K. A., Park K. D., Ahn J., Park Y., Kim Y. J. (2016). Comparison of changes in biochemical markers for skeletal muscles, hepatic metabolism, and renal function after three types of long-distance running: observational study. Medicine 95:e3657. 10.1097/MD.0000000000003657, PMID: PubMed DOI PMC

Smith J. E., Garbutt G., Lopes P., Tunstall Pedoe D. (2004). Effects of prolonged strenuous exercise (marathon running) on biochemical and haematological markers used in the investigation of patients in the emergency department. Br. J. Sports Med. 38, 292–294. 10.1136/bjsm.2002.002873, PMID: PubMed DOI PMC

Stavroulakis G. A., George K. P. (2020). Exercise-induced release of troponin. Clin. Cardiol. 43, 872–881. 10.1002/clc.23337, PMID: PubMed DOI PMC

Swift D. L., Johannsen N. M., Earnest C. P., Blair S. N., Church T. S. (2012). Effect of different doses of aerobic exercise training on total bilirubin levels. Med. Sci. Sports Exerc. 44, 569–574. 10.1249/MSS.0b013e3182357dd4, PMID: PubMed DOI PMC

Takahashi M., Ueda K., Tabata R., Iwata S., Ozawa K., Uno S., et al. . (1997). Arterial ketone body ratio as a prognostic indicator in acute heart failure. J. Lab. Clin. Med. 129, 72–80. 10.1016/S0022-2143(97)90163-3 PubMed DOI

Tapuria N., Kumar Y., Habib M. M., Abu Amara M., Seifalian A. M., Davidson B. R. (2008). Remote ischemic preconditioning: a novel protective method from ischemia reperfusion injury–a review. J. Surg. Res. 150, 304–330. 10.1016/j.jss.2007.12.747, PMID: PubMed DOI

Thijssen D. H., Maxwell J., Green D. J., Cable N. T., Jones H. (2016). Repeated ischaemic preconditioning: a novel therapeutic intervention and potential underlying mechanisms. Exp. Physiol. 101, 677–692. 10.1113/EP085566, PMID: PubMed DOI

Turner J. E., Hodges N. J., Bosch J. A., Aldred S. (2011). Prolonged depletion of antioxidant capacity after ultraendurance exercise. Med. Sci. Sports Exerc. 43, 1770–1776. 10.1249/MSS.0b013e31821240bb, PMID: PubMed DOI

Venugopal V., Hausenloy D. J., Ludman A., Di Salvo C., Kolvekar S., Yap J., et al. . (2009). Remote ischaemic preconditioning reduces myocardial injury in patients undergoing cardiac surgery with cold-blood cardioplegia: a randomised controlled trial. Heart 95, 1567–1571. 10.1136/hrt.2008.155770, PMID: PubMed DOI

White M. G., Stoward P. J., Christie K. N., Anderson J. M. (1985). Proteases in normal and diseased human skeletal-muscle – a preliminary histochemical survey. Histochem. J. 17, 819–832. 10.1007/BF01003317, PMID: PubMed DOI

White H., Venkatesh B. (2011). Clinical review: ketones and brain injury. Crit. Care 15:219. 10.1186/cc10020, PMID: PubMed DOI PMC

Withee E. D., Tippens K. M., Dehen R., Tibbitts D., Hanes D., Zwickey H. (2017). Effects of methylsulfonylmethane (MSM) on exercise-induced oxidative stress, muscle damage, and pain following a half-marathon: a double-blind, randomized, placebo-controlled trial. J. Int. Soc. Sports Nutr. 14:24. 10.1186/s12970-017-0181-z, PMID: PubMed DOI PMC

Wu H. J., Chen K. T., Shee B. W., Chang H. C., Huang Y. J., Yang R. S. (2004). Effects of 24 h ultra-marathon on biochemical and hematological parameters. World J. Gastroenterol. 10, 2711–2714. 10.3748/wjg.v10.i18.2711, PMID: PubMed DOI PMC

Wu G., Chen M., Wang X., Kong E., Yu W., Sun Y., et al. . (2020). Effect of remote ischemic preconditioning on hepatic ischemia-reperfusion injury in patients undergoing liver resection: a randomized controlled trial. Minerva Anestesiol. 86, 252–260. 10.23736/S0375-9393.19.13838-2, PMID: PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...