Porous Medium Equation in Graphene Oxide Membrane: Nonlinear Dependence of Permeability on Pressure Gradient Explained

. 2021 Aug 29 ; 11 (9) : . [epub] 20210829

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34564482

Membrane performance in gas separation is quantified by its selectivity, determined as a ratio of measured gas permeabilities of given gases at fixed pressure difference. In this manuscript a nonlinear dependence of gas permeability on pressure difference observed in the measurements of gas permeability of graphene oxide membrane on a manometric integral permeameter is reported. We show that after reasoned assumptions and simplifications in the mathematical description of the experiment, only static properties of any proposed governing equation can be studied, in order to analyze the permeation rate for different pressure differences. Porous Medium Equation is proposed as a suitable governing equation for the gas permeation, as it manages to predict a nonlinear behavior which is consistent with the measured data. A coefficient responsible for the nonlinearity, the polytropic exponent, is determined to be gas-specific-implications on selectivity are discussed, alongside possible hints to a deeper physical interpretation of its actual value.

Zobrazit více v PubMed

TechNavio . Global Gas Separation Membrane Market 2021–2025. ReportLinker; Lyon, France: 2021. Technical Report.

Robeson L.M. The upper bound revisited. J. Membr. Sci. 2008;320:390–400. doi: 10.1016/j.memsci.2008.04.030. DOI

Bouša D., Friess K., Pilnáček K., Vopička O., Lanč M., Fónod K., Pumera M., Sedmidubský D., Luxa J., Sofer Z. Thin, High-Flux, Self-Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures. Chem. Eur. J. 2017;23:11416–11422. doi: 10.1002/chem.201702233. PubMed DOI

Guan K., Shen J., Liu G., Zhao J., Zhou H., Jin W. Spray-evaporation assembled graphene oxide membranes for selective hydrogen transport. Sep. Purif. Technol. 2017;174:126–135. doi: 10.1016/j.seppur.2016.10.012. DOI

Zhang Y., Zhang S., Gao J., Chung T.S. Layer-by-layer construction of graphene oxide (GO) framework composite membranes for highly efficient heavy metal removal. J. Membr. Sci. 2016;515:230–237. doi: 10.1016/j.memsci.2016.05.035. DOI

Shen J., Liu G., Huang K., Jin W., Lee K.R., Xu N. Membranes with Fast and Selective Gas-Transport Channels of Laminar Graphene Oxide for Efficient CO2 Capture. Angew. Chem. Int. Ed. 2015;54:578–582. doi: 10.1002/anie.201409563. PubMed DOI

Huang H., Ying Y., Peng X. Graphene oxide nanosheet: An emerging star material for novel separation membranes. J. Mater. Chem. A. 2014;2:13772–13782. doi: 10.1039/C4TA02359E. DOI

Krishnamoorthy K., Veerapandian M., Yun K., Kim S.J. The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon. 2013;53:38–49. doi: 10.1016/j.carbon.2012.10.013. DOI

Compton O.C., Nguyen S.T. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small. 2010;6:711–723. doi: 10.1002/smll.200901934. PubMed DOI

Dikin D.A., Stankovich S., Zimney E.J., Piner R.D., Dommett G.H.B., Evmenenko G., Bguyen S.T., Ruoff R.S. Preparation and characterization of graphene oxide paper. Nature. 2007;448:457–560. doi: 10.1038/nature06016. PubMed DOI

Freeman B.D. Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes. Macromolecules. 1999;32:375–380. doi: 10.1021/ma9814548. DOI

Park H.B., Kamcev J., Robeson L.M., Elimelech M., Freeman B.D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science. 2017;356:eaab0530. doi: 10.1126/science.aab0530. PubMed DOI

Malgras V., Ji Q., Kamachi Y., Mori T., Shieh F.K., Wu K.C.W., Ariga K., Yamauchi Y. Templated synthesis for nanoarchitectured porous materials. Bull. Chem. Soc. Jpn. 2015;88:1171–1200. doi: 10.1246/bcsj.20150143. DOI

Li W., Samarasinghe S., Bae T.H. Enhancing CO2/CH4 separation performance and mechanical strength of mixed-matrix membrane via combined use of graphene oxide and ZIF-8. J. Ind. Eng. Chem. 2018;67:156–163. doi: 10.1016/j.jiec.2018.06.026. DOI

Zhu J., Meng X., Zhao J., Jin Y., Yang N., Zhang S., Sunarso J., Liu S. Facile hydrogen/nitrogen separation through graphene oxide membranes supported on YSZ ceramic hollow fibers. J. Membr. Sci. 2017;535:143–150. doi: 10.1016/j.memsci.2017.04.032. DOI

Jia M., Feng Y., Liu S., Qiu J., Yao J. Graphene oxide gas separation membranes intercalated by UiO-66-NH2 with enhanced hydrogen separation performance. J. Membr. Sci. 2017;539:172–177. doi: 10.1016/j.memsci.2017.06.005. DOI

Yoo B.M., Shin J.E., Lee H.D., Park H.B. Graphene and graphene oxide membranes for gas separation applications. Curr. Opin. Chem. Eng. 2017;16:39–47. doi: 10.1016/j.coche.2017.04.004. DOI

Meng N., Priestley R.C.E., Zhang Y., Wang H., Zhang X. The effect of reduction degree of GO nanosheets on microstructure and performance of PVDF/GO hybrid membranes. J. Membr. Sci. 2016;501:169–178. doi: 10.1016/j.memsci.2015.12.004. DOI

Zahid M., Akram S., Rashid A., Rehan Z.A., Javed T., Shabbir R., Hessien M.M., El-Sayed M.E. Investigating the Antibacterial Activity of Polymeric Membranes Fabricated with Aminated Graphene Oxide. Membranes. 2021;11:510. doi: 10.3390/membranes11070510. PubMed DOI PMC

Liu Z., Wu W., Liu Y., Qin C., Meng M., Jiang Y., Qiu J., Peng J. A mussel inspired highly stable graphene oxide membrane for efficient oil-in-water emulsions separation. Sep. Purif. Technol. 2018;199:37–46. doi: 10.1016/j.seppur.2018.01.041. DOI

Pandey R.P., Shukla G., Manohar M., Shahi V.K. Graphene oxide based nanohybrid proton exchange membranes for fuel cell applications: An overview. Adv. Colloid Interface Sci. 2017;240:15–30. doi: 10.1016/j.cis.2016.12.003. PubMed DOI

Huang K., Liu G., Lou Y., Dong Z., Shen J., Jin W. A Graphene Oxide Membrane with Highly Selective Molecular Separation of Aqueous Organic Solution. Angew. Chem. Int. Ed. 2014;53:6929–6932. doi: 10.1002/anie.201401061. PubMed DOI

Han Y., Xu Z., Gao C. Ultrathin Graphene Nanofiltration Membrane for Water Purification. Adv. Funct. Mater. 2013;23:3693–3700. doi: 10.1002/adfm.201202601. DOI

Hu M., Mi B. Enabling Graphene Oxide Nanosheets as Water Separation Membranes. Environ. Sci. Technol. 2013;47:3715–3723. doi: 10.1021/es400571g. PubMed DOI

Wei Z., Wang D., Kim S., Kim S.Y., Hu Y., Yakes M.K., Laracuente A.R., Dai Z., Marder S.R., Berger C., et al. Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics. Science. 2010;328:1373–1376. doi: 10.1126/science.1188119. PubMed DOI

Mohammed S.A., Nasir A., Aziz F., Kumar G., Sallehhudin W., Jaafar J., Lau W., Yusof N., Salleh W., Ismail A. CO2/N2 selectivity enhancement of PEBAX MH 1657/Aminated partially reduced graphene oxide mixed matrix composite membrane. Sep. Purif. Technol. 2019;223:142–153. doi: 10.1016/j.seppur.2019.04.061. DOI

Zhang Y., Ma J., Bai Y., Wen Y., Zhao N., Zhang X., Zhang Y., Li Q., Wei L. The Preparation and Properties of Nanocomposite from Bio-Based Polyurethane and Graphene Oxide for Gas Separation. Nanomaterials. 2019;9:15. doi: 10.3390/nano9010015. PubMed DOI PMC

Zomorodkia A.A., Bazgir S., Zaarei D., Gorji M., Ardjmand M. Permeation of water, ammonia and dichloromethane through graphene oxide/polymeric matrix composite membranes. New Carbon Mater. 2020;35:739–751. doi: 10.1016/S1872-5805(20)60514-5. DOI

Cheng L., Yang H., Chen X., Liu G., Guo Y., Liu G., Jin W. MIL-101(Cr) microporous nanocrystals intercalating graphene oxide membrane for efficient hydrogen purification. Chem. Asian J. 2021 doi: 10.1002/asia.202100834. PubMed DOI

Qu L., Wang N., Xu H., Wang W., Liu Y., Kuo L., Yadav T.P., Wu J., Joyner J., Song Y., et al. Gold Nanoparticles and g-C3N4-Intercalated Graphene Oxide Membrane for Recyclable Surface Enhanced Raman Scattering. Adv. Funct. Mater. 2017;27:1701714. doi: 10.1002/adfm.201701714. DOI

Chen X., Qiu M., Ding H., Fu K., Fan Y. A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification. Nanoscale. 2016;8:5696–5705. doi: 10.1039/C5NR08697C. PubMed DOI

Alen S.K., Nam S., Dastgheib S.A. Recent Advances in Graphene Oxide Membranes for Gas Separation Applications. Int. J. Mol. Sci. 2019;20:5609. doi: 10.3390/ijms20225609. PubMed DOI PMC

Hassani N., Rashidi R., Milošević M.V., Neek-Amal M. Evaluating gas permeance through graphene nanopores and porous 2D-membranes: A generalized approach. Carbon Trends. 2021;5:100086. doi: 10.1016/j.cartre.2021.100086. DOI

Tronci G., Raffone F., Cicero G. Theoretical Study of Nanoporous Graphene Membranes for Natural Gas Purification. Appl. Sci. 2018;8:1547. doi: 10.3390/app8091547. DOI

Esfandiarpoor S., Fazli M., Ganji M.D. Reactive molecular dynamic simulations on the gas separation performance of porous graphene membrane. Sci. Rep. 2017;7:16561. doi: 10.1038/s41598-017-14297-w. PubMed DOI PMC

Yang X., Yang X., Liu S. Molecular dynamics simulation of water transport through graphene-based nanopores: Flow behavior and structure characteristics. Chin. J. Chem. Eng. 2015;23:1587–1592. doi: 10.1016/j.cjche.2015.05.015. DOI

Levdansky V., Šolcová O., Friess K., Izák P. Mass Transfer Through Graphene-Based Membranes. Appl. Sci. 2020;10:455. doi: 10.3390/app10020455. DOI

Koenig S.P., Wang L., Pellegrino J., Buch J.S. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 2012;7:728–732. doi: 10.1038/nnano.2012.162. PubMed DOI

Otřísal P., Friess K., Fehorova L., Melicharix Z., Bungau C., Mosteanu D. The Heat Stress Effects on the Gases Permeability of the Isolative Type Garment of the Czech Armed Forces Chemical Corps Specialist Body Surface Protection. Rev. Chim. Buchar. Orig. Ed. 2019;70:1597–1602. doi: 10.37358/RC.19.5.7176. DOI

Mrazík L. Master’s Thesis. University of Chemistry and Technology Prague; Praha, Czech Republic: 2020. Modelling of Gas Transport through a Membrane Using PDEs.

Vazquez J.L. The Porous Medium Equation: Mathematical Theory. Clarendon Press; Oxford, UK: 2006. Oxford Mathematical Monographs.

Stern S.A. The “barrer” permeability unit. J. Polym. Sci. Part A-2 Polym. Phys. 1968;6:1933–1934. doi: 10.1002/pol.1968.160061108. DOI

Tepelná Kapacita Plynů. [(accessed on 9 August 2021)]. Available online: http://uchi-old.vscht.cz/uploads/etabulky/cpplyn.html.

Whitaker S. The Equations of Motion in Porous Media. Chem. Eng. Sci. 1966;21:291–300. doi: 10.1016/0009-2509(66)85020-0. DOI

Neuman S.P. Theoretical derivation of Darcy’s law. Acta Mech. 1977;25:153–170. doi: 10.1007/BF01376989. DOI

Whitaker S. Flow in porous media I: A theoretical derivation of Darcy’s law. Transp. Porous Media. 1986;1:3–25. doi: 10.1007/BF01036523. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...