Porous Medium Equation in Graphene Oxide Membrane: Nonlinear Dependence of Permeability on Pressure Gradient Explained
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34564482
PubMed Central
PMC8469019
DOI
10.3390/membranes11090665
PII: membranes11090665
Knihovny.cz E-zdroje
- Klíčová slova
- graphene oxide, membrane gas separation, nonlinear diffusion, permeability, porous medium equation, selectivity,
- Publikační typ
- časopisecké články MeSH
Membrane performance in gas separation is quantified by its selectivity, determined as a ratio of measured gas permeabilities of given gases at fixed pressure difference. In this manuscript a nonlinear dependence of gas permeability on pressure difference observed in the measurements of gas permeability of graphene oxide membrane on a manometric integral permeameter is reported. We show that after reasoned assumptions and simplifications in the mathematical description of the experiment, only static properties of any proposed governing equation can be studied, in order to analyze the permeation rate for different pressure differences. Porous Medium Equation is proposed as a suitable governing equation for the gas permeation, as it manages to predict a nonlinear behavior which is consistent with the measured data. A coefficient responsible for the nonlinearity, the polytropic exponent, is determined to be gas-specific-implications on selectivity are discussed, alongside possible hints to a deeper physical interpretation of its actual value.
Department of Mathematics University of Chemistry and Technology Prague 166 28 Prague Czech Republic
Zobrazit více v PubMed
TechNavio . Global Gas Separation Membrane Market 2021–2025. ReportLinker; Lyon, France: 2021. Technical Report.
Robeson L.M. The upper bound revisited. J. Membr. Sci. 2008;320:390–400. doi: 10.1016/j.memsci.2008.04.030. DOI
Bouša D., Friess K., Pilnáček K., Vopička O., Lanč M., Fónod K., Pumera M., Sedmidubský D., Luxa J., Sofer Z. Thin, High-Flux, Self-Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures. Chem. Eur. J. 2017;23:11416–11422. doi: 10.1002/chem.201702233. PubMed DOI
Guan K., Shen J., Liu G., Zhao J., Zhou H., Jin W. Spray-evaporation assembled graphene oxide membranes for selective hydrogen transport. Sep. Purif. Technol. 2017;174:126–135. doi: 10.1016/j.seppur.2016.10.012. DOI
Zhang Y., Zhang S., Gao J., Chung T.S. Layer-by-layer construction of graphene oxide (GO) framework composite membranes for highly efficient heavy metal removal. J. Membr. Sci. 2016;515:230–237. doi: 10.1016/j.memsci.2016.05.035. DOI
Shen J., Liu G., Huang K., Jin W., Lee K.R., Xu N. Membranes with Fast and Selective Gas-Transport Channels of Laminar Graphene Oxide for Efficient CO2 Capture. Angew. Chem. Int. Ed. 2015;54:578–582. doi: 10.1002/anie.201409563. PubMed DOI
Huang H., Ying Y., Peng X. Graphene oxide nanosheet: An emerging star material for novel separation membranes. J. Mater. Chem. A. 2014;2:13772–13782. doi: 10.1039/C4TA02359E. DOI
Krishnamoorthy K., Veerapandian M., Yun K., Kim S.J. The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon. 2013;53:38–49. doi: 10.1016/j.carbon.2012.10.013. DOI
Compton O.C., Nguyen S.T. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small. 2010;6:711–723. doi: 10.1002/smll.200901934. PubMed DOI
Dikin D.A., Stankovich S., Zimney E.J., Piner R.D., Dommett G.H.B., Evmenenko G., Bguyen S.T., Ruoff R.S. Preparation and characterization of graphene oxide paper. Nature. 2007;448:457–560. doi: 10.1038/nature06016. PubMed DOI
Freeman B.D. Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes. Macromolecules. 1999;32:375–380. doi: 10.1021/ma9814548. DOI
Park H.B., Kamcev J., Robeson L.M., Elimelech M., Freeman B.D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science. 2017;356:eaab0530. doi: 10.1126/science.aab0530. PubMed DOI
Malgras V., Ji Q., Kamachi Y., Mori T., Shieh F.K., Wu K.C.W., Ariga K., Yamauchi Y. Templated synthesis for nanoarchitectured porous materials. Bull. Chem. Soc. Jpn. 2015;88:1171–1200. doi: 10.1246/bcsj.20150143. DOI
Li W., Samarasinghe S., Bae T.H. Enhancing CO2/CH4 separation performance and mechanical strength of mixed-matrix membrane via combined use of graphene oxide and ZIF-8. J. Ind. Eng. Chem. 2018;67:156–163. doi: 10.1016/j.jiec.2018.06.026. DOI
Zhu J., Meng X., Zhao J., Jin Y., Yang N., Zhang S., Sunarso J., Liu S. Facile hydrogen/nitrogen separation through graphene oxide membranes supported on YSZ ceramic hollow fibers. J. Membr. Sci. 2017;535:143–150. doi: 10.1016/j.memsci.2017.04.032. DOI
Jia M., Feng Y., Liu S., Qiu J., Yao J. Graphene oxide gas separation membranes intercalated by UiO-66-NH2 with enhanced hydrogen separation performance. J. Membr. Sci. 2017;539:172–177. doi: 10.1016/j.memsci.2017.06.005. DOI
Yoo B.M., Shin J.E., Lee H.D., Park H.B. Graphene and graphene oxide membranes for gas separation applications. Curr. Opin. Chem. Eng. 2017;16:39–47. doi: 10.1016/j.coche.2017.04.004. DOI
Meng N., Priestley R.C.E., Zhang Y., Wang H., Zhang X. The effect of reduction degree of GO nanosheets on microstructure and performance of PVDF/GO hybrid membranes. J. Membr. Sci. 2016;501:169–178. doi: 10.1016/j.memsci.2015.12.004. DOI
Zahid M., Akram S., Rashid A., Rehan Z.A., Javed T., Shabbir R., Hessien M.M., El-Sayed M.E. Investigating the Antibacterial Activity of Polymeric Membranes Fabricated with Aminated Graphene Oxide. Membranes. 2021;11:510. doi: 10.3390/membranes11070510. PubMed DOI PMC
Liu Z., Wu W., Liu Y., Qin C., Meng M., Jiang Y., Qiu J., Peng J. A mussel inspired highly stable graphene oxide membrane for efficient oil-in-water emulsions separation. Sep. Purif. Technol. 2018;199:37–46. doi: 10.1016/j.seppur.2018.01.041. DOI
Pandey R.P., Shukla G., Manohar M., Shahi V.K. Graphene oxide based nanohybrid proton exchange membranes for fuel cell applications: An overview. Adv. Colloid Interface Sci. 2017;240:15–30. doi: 10.1016/j.cis.2016.12.003. PubMed DOI
Huang K., Liu G., Lou Y., Dong Z., Shen J., Jin W. A Graphene Oxide Membrane with Highly Selective Molecular Separation of Aqueous Organic Solution. Angew. Chem. Int. Ed. 2014;53:6929–6932. doi: 10.1002/anie.201401061. PubMed DOI
Han Y., Xu Z., Gao C. Ultrathin Graphene Nanofiltration Membrane for Water Purification. Adv. Funct. Mater. 2013;23:3693–3700. doi: 10.1002/adfm.201202601. DOI
Hu M., Mi B. Enabling Graphene Oxide Nanosheets as Water Separation Membranes. Environ. Sci. Technol. 2013;47:3715–3723. doi: 10.1021/es400571g. PubMed DOI
Wei Z., Wang D., Kim S., Kim S.Y., Hu Y., Yakes M.K., Laracuente A.R., Dai Z., Marder S.R., Berger C., et al. Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics. Science. 2010;328:1373–1376. doi: 10.1126/science.1188119. PubMed DOI
Mohammed S.A., Nasir A., Aziz F., Kumar G., Sallehhudin W., Jaafar J., Lau W., Yusof N., Salleh W., Ismail A. CO2/N2 selectivity enhancement of PEBAX MH 1657/Aminated partially reduced graphene oxide mixed matrix composite membrane. Sep. Purif. Technol. 2019;223:142–153. doi: 10.1016/j.seppur.2019.04.061. DOI
Zhang Y., Ma J., Bai Y., Wen Y., Zhao N., Zhang X., Zhang Y., Li Q., Wei L. The Preparation and Properties of Nanocomposite from Bio-Based Polyurethane and Graphene Oxide for Gas Separation. Nanomaterials. 2019;9:15. doi: 10.3390/nano9010015. PubMed DOI PMC
Zomorodkia A.A., Bazgir S., Zaarei D., Gorji M., Ardjmand M. Permeation of water, ammonia and dichloromethane through graphene oxide/polymeric matrix composite membranes. New Carbon Mater. 2020;35:739–751. doi: 10.1016/S1872-5805(20)60514-5. DOI
Cheng L., Yang H., Chen X., Liu G., Guo Y., Liu G., Jin W. MIL-101(Cr) microporous nanocrystals intercalating graphene oxide membrane for efficient hydrogen purification. Chem. Asian J. 2021 doi: 10.1002/asia.202100834. PubMed DOI
Qu L., Wang N., Xu H., Wang W., Liu Y., Kuo L., Yadav T.P., Wu J., Joyner J., Song Y., et al. Gold Nanoparticles and g-C3N4-Intercalated Graphene Oxide Membrane for Recyclable Surface Enhanced Raman Scattering. Adv. Funct. Mater. 2017;27:1701714. doi: 10.1002/adfm.201701714. DOI
Chen X., Qiu M., Ding H., Fu K., Fan Y. A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification. Nanoscale. 2016;8:5696–5705. doi: 10.1039/C5NR08697C. PubMed DOI
Alen S.K., Nam S., Dastgheib S.A. Recent Advances in Graphene Oxide Membranes for Gas Separation Applications. Int. J. Mol. Sci. 2019;20:5609. doi: 10.3390/ijms20225609. PubMed DOI PMC
Hassani N., Rashidi R., Milošević M.V., Neek-Amal M. Evaluating gas permeance through graphene nanopores and porous 2D-membranes: A generalized approach. Carbon Trends. 2021;5:100086. doi: 10.1016/j.cartre.2021.100086. DOI
Tronci G., Raffone F., Cicero G. Theoretical Study of Nanoporous Graphene Membranes for Natural Gas Purification. Appl. Sci. 2018;8:1547. doi: 10.3390/app8091547. DOI
Esfandiarpoor S., Fazli M., Ganji M.D. Reactive molecular dynamic simulations on the gas separation performance of porous graphene membrane. Sci. Rep. 2017;7:16561. doi: 10.1038/s41598-017-14297-w. PubMed DOI PMC
Yang X., Yang X., Liu S. Molecular dynamics simulation of water transport through graphene-based nanopores: Flow behavior and structure characteristics. Chin. J. Chem. Eng. 2015;23:1587–1592. doi: 10.1016/j.cjche.2015.05.015. DOI
Levdansky V., Šolcová O., Friess K., Izák P. Mass Transfer Through Graphene-Based Membranes. Appl. Sci. 2020;10:455. doi: 10.3390/app10020455. DOI
Koenig S.P., Wang L., Pellegrino J., Buch J.S. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 2012;7:728–732. doi: 10.1038/nnano.2012.162. PubMed DOI
Otřísal P., Friess K., Fehorova L., Melicharix Z., Bungau C., Mosteanu D. The Heat Stress Effects on the Gases Permeability of the Isolative Type Garment of the Czech Armed Forces Chemical Corps Specialist Body Surface Protection. Rev. Chim. Buchar. Orig. Ed. 2019;70:1597–1602. doi: 10.37358/RC.19.5.7176. DOI
Mrazík L. Master’s Thesis. University of Chemistry and Technology Prague; Praha, Czech Republic: 2020. Modelling of Gas Transport through a Membrane Using PDEs.
Vazquez J.L. The Porous Medium Equation: Mathematical Theory. Clarendon Press; Oxford, UK: 2006. Oxford Mathematical Monographs.
Stern S.A. The “barrer” permeability unit. J. Polym. Sci. Part A-2 Polym. Phys. 1968;6:1933–1934. doi: 10.1002/pol.1968.160061108. DOI
Tepelná Kapacita Plynů. [(accessed on 9 August 2021)]. Available online: http://uchi-old.vscht.cz/uploads/etabulky/cpplyn.html.
Whitaker S. The Equations of Motion in Porous Media. Chem. Eng. Sci. 1966;21:291–300. doi: 10.1016/0009-2509(66)85020-0. DOI
Neuman S.P. Theoretical derivation of Darcy’s law. Acta Mech. 1977;25:153–170. doi: 10.1007/BF01376989. DOI
Whitaker S. Flow in porous media I: A theoretical derivation of Darcy’s law. Transp. Porous Media. 1986;1:3–25. doi: 10.1007/BF01036523. DOI