Active Edible Films Fortified with Natural Extracts: Case Study with Fresh-Cut Apple Pieces
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
229/2020/FVHE
Internal Grant Agency University of Veterinary Sciences Brno
PubMed
34564501
PubMed Central
PMC8467745
DOI
10.3390/membranes11090684
PII: membranes11090684
Knihovny.cz E-resources
- Keywords
- Gala, Golden Delicious, active properties, antioxidant properties, fruit packaging, intelligent properties,
- Publication type
- Journal Article MeSH
The main aim of the study was to prepare the edible films based on carrageenan/chitosan and incorporate them into the following matrices: the natural extracts of Clitoria ternatea, Brassica oleracea, and Ipomea batatas. The films were characterized by TPC (total polyphenols content), antioxidant activity, and textural properties. Experimentally produced films were added in the packaging of freshly cut apple pieces, and the apple pieces were dipped into the films produced from carrageenan and chitosan. The appearance of the samples was monitored, as were antioxidant activity and total polyphenol content. The intelligent properties of films were evaluated too. The polymer type used for the preparation had the highest impact on the prepared films, and CHLCZ (red cabbage extract-Brassica oleracea) featured the best antioxidant activity. The intelligent properties were slightly confirmed in samples with the addition of red cabbage. The main finding was that the coating of fresh-cut apples emphasized the possibility to use a carrageenan matrix with the addition of extracts. The samples immersed in this coating type showed higher antioxidant activity as well as a superior color when compared to that of chitosan coated apple samples.
See more in PubMed
Krochta J.M. Proteins as raw materials for films and coatings: Definitions, current status, and opportunities. Protein-Based Film. Coat. 2002;1:1–40.
Erginkaya Z., Kalkan S., Ünal E. Food Processing: Strategies for Quality Assessment. Springer; New York, NY, USA: 2014. Use of antimicrobial edible films and coatings as packaging materials for food safety; pp. 261–295.
Mkandawire M., Aryee A.N. Resurfacing and modernization of edible packaging material technology. Curr. Opin. Food Sci. 2018;19:104–112. doi: 10.1016/j.cofs.2018.03.010. DOI
Jancikova S., Dordevic D., Jamroz E., Behalova H., Tremlova B. Chemical and physical characteristics of edible films, based on κ-and ι-carrageenans with the addition of lapacho tea extract. Foods. 2020;9:357. doi: 10.3390/foods9030357. PubMed DOI PMC
Liu J., Wang H., Wang P., Guo M., Jiang S., Li X., Jiang S. Films based on κ-carrageenan incorporated with curcumin for freshness monitoring. Food Hydrocoll. 2018;83:134–142. doi: 10.1016/j.foodhyd.2018.05.012. DOI
De Ruiter G.A., Rudolph B. Carrageenan biotechnology. Trends Food Sci. Tech. 1997;8:389–395. doi: 10.1016/S0924-2244(97)01091-1. DOI
Halász K., Csóka L. Black chokeberry (Aronia melanocarpa) pomace extract immobilized in chitosan for colorimetric pH indicator film application. Food Packag. Shelf Life. 2018;16:185–193. doi: 10.1016/j.fpsl.2018.03.002. DOI
Yoshida C.M., Maciel V.B.V., Mendonça M.E.D., Franco T.T. Chitosan biobased and intelligent films: Monitoring pH variations. LWT-Food Sci. Technol. 2014;55:83–89. doi: 10.1016/j.lwt.2013.09.015. DOI
Vo T.V., Dang T.H., Chen B.H. Synthesis of intelligent pH indicative films from chitosan/poly (vinyl alcohol)/anthocyanin extracted from red cabbage. Polymers. 2019;11:1088. doi: 10.3390/polym11071088. PubMed DOI PMC
Islam S., Bhuiyan M.R., Islam M.N. Chitin and chitosan: Structure, properties and applications in biomedical engineering. J. Polym. Environ. 2017;25:854–866. doi: 10.1007/s10924-016-0865-5. DOI
Pereira de Abreu D.A., Cruz J.M., Paseiro Losada P. Active and intelligent packaging for the food industry. Food Rev. Int. 2012;28:146–187. doi: 10.1080/87559129.2011.595022. DOI
Ahmad A.N., Abdullah Lim S., Navaranjan N. Development of sago (Metroxylon sagu)-based colorimetric indicator incorporated with butterfly pea (Clitoria ternatea) anthocyanin for intelligent food packaging. J. Food Saf. 2020;40:e12807. doi: 10.1111/jfs.12807. DOI
Mane S.R., Kumbhar V.R., Birajdar G.M., Naryankar R.S., Gavali M.T., UN B. Mycorrhizal association and influence on growth of Asian pigeonwings (Clitoria ternatea L.) Int. J. Bioassays. 2017;6:5415–5419.
Amaolo A. The butterfly pea flower as a pH indicator. Int. Scholast. J. Sci. 2017;11:1–3.
Saptarini N.M., Suryasaputra D., Nurmalia H. Application of butterfly pea (Clitoria ternatea Linn) extract as an indicator of acid-base titration. J. Chem. Pharm. Res. 2015;7:275–280.
Sutakwa A., Nadia L.S., Suharman S. Addition of blue pea flower (Clitoria ternatea L.) extract increase antioxidant activity in yogurt from various types of milk. J. Agercolere. 2021;3:31–37. doi: 10.37195/jac.v3i1.123. DOI
Mizgier P., Kucharska A.Z., Sokół-Łętowska A., Kolniak-Ostek J., Kidoń M., Fecka I. Characterization of phenolic compounds and antioxidant and anti-inflammatory properties of red cabbage and purple carrot extracts. J. Funct. Foods. 2016;21:133–146. doi: 10.1016/j.jff.2015.12.004. DOI
Dyrby M., Westergaard N., Stapelfeldt H. Light and heat sensitivity of red cabbage extract in soft drink model systems. Food Chem. 2001;72:431–437. doi: 10.1016/S0308-8146(00)00251-X. DOI
Makori S.I., Mu T.H., Sun H.N. Total polyphenol content, antioxidant activity, and individual phenolic composition of different edible parts of 4 sweet potato cultivars. Nat. Prod. Commun. 2020;15:1934578X20936931. doi: 10.1177/1934578X20936931. DOI
Huang D.J., Chun-Der L.I.N., Hsien-Jung C.H.E.N., Yaw-Huei L.I.N. Antioxidant and antiproliferative activities of sweet potato (Ipomoea batatas [L.] LamTainong 57’) constituents. Bot. Bull. Acad. Sin. 2004;45:179–186.
Santos-Sánchez N.F., Salas-Coronado R., Villanueva-Cañongo C., Hernández-Carlos B. Antioxidant Compounds and Their Antioxidant Mechanism. IntechOpen; London, UK: 2019. pp. 1–28.
Tanaka Y., Sasaki N., Ohmiya A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. Plant J. 2008;54:733–749. doi: 10.1111/j.1365-313X.2008.03447.x. PubMed DOI
Cofelice M., Lopez F., Cuomo F. Quality control of fresh-cut apples after coating application. Foods. 2019;8:189. doi: 10.3390/foods8060189. PubMed DOI PMC
Guerreiro A.C., Gago C.M., Faleiro M.L., Miguel M.G., Antunes M.D. Edible coatings enriched with essential oils for extending the shelf-life of ‘Bravo de Esmolfe’fresh-cut apples. Int. J. Food Sci. Tech. 2016;51:87–95. doi: 10.1111/ijfs.12949. DOI
Li X., Li W., Jiang Y., Ding Y., Yun J., Tang Y., Zhang P. Effect of nano-ZnO-coated active packaging on quality of fresh-cut ‘Fuji’apple. Int. J. Food Sci. Tech. 2011;46:1947–1955. doi: 10.1111/j.1365-2621.2011.02706.x. DOI
Perdones A., Sánchez-González L., Chiralt A., Vargas M. Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol. Technol. 2012;70:32–41. doi: 10.1016/j.postharvbio.2012.04.002. DOI
Bico S.L.S., Raposo M.F.J., Morais R.M.S.C., Morais A.M.M.B. Combined effects of chemical dip and/or carrageenan coating and/or controlled atmosphere on quality of fresh-cut banana. Food Control. 2009;20:508–514. doi: 10.1016/j.foodcont.2008.07.017. DOI
Nollet L.M.L., editor. Handbook of Food Analysis: Methods and Instruments in Applied Food Analysis. Volume 138 CRC Press; Boca Raton, FL, USA: 2004.
Behbahani B.A., Shahidi F., Yazdi F.T., Mortazavi S.A., Mohebbi M. Use of Plantago major seed mucilage as a novel edible coating incorporated with Anethum graveolens essential oil on shelf life extension of beef in refrigerated storage. Int. J. Biol. Macromol. 2017;94:515–526. doi: 10.1016/j.ijbiomac.2016.10.055. PubMed DOI
Adilah A.N., Jamilah B., Noranizan M.A., Hanani Z.N. Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packag. Shelf Life. 2018;16:1–7. doi: 10.1016/j.fpsl.2018.01.006. DOI
Tomadoni B., Cassani L., Ponce A., Moreira M.D.R., Agüero M.V. Optimization of ultrasound, vanillin and pomegranate extract treatment for shelf-stable unpasteurized strawberry juice. LWT-Food Sci. Technol. 2016;72:475–484. doi: 10.1016/j.lwt.2016.05.024. DOI
Schlesier K., Harwat M., Böhm V., Bitsch R. Assessment of antioxidant activity by using different in vitro methods. Free Radic. Res. 2002;36:177–187. doi: 10.1080/10715760290006411. PubMed DOI
Shah P., Modi H.A. Comparative study of DPPH, ABTS and FRAP assays for determination of antioxidant activity. Int. J. Res. Appl. Sci. Eng. Technol. 2015;3:636–641.
Benbettaïeb N., Debeaufort F., Karbowiak T. Bioactive edible films for food applications: Mechanisms of antimicrobial and antioxidant activity. Crit. Rev. Food Sci. 2019;59:3431–3455. doi: 10.1080/10408398.2018.1494132. PubMed DOI
Park P.J., Je J.Y., Kim S.K. Free radical scavenging activities of differently deacetylated chitosans using an ESR spectrometer. Carbohyd. Polym. 2004;55:17–22. doi: 10.1016/j.carbpol.2003.05.002. DOI
Gennadios A., Weller C.L., Testin R.F. Modification of physical and barrier properties of edible wheat gluten-based films. Cereal Chem. 1993;70:426–429.
Gontard N., Guilbert S., Cuo J.L. Edible wheat gluten films: Influence of the main process variables on film properties using response surface methodology. J. Food Sci. 1992;57:190–195. doi: 10.1111/j.1365-2621.1992.tb05453.x. DOI
Fagundes C., Carciofi B.A.M., Monteiro A.R. Estimate of respiration rate and physicochemical changes of fresh-cut apples stored under different temperatures. Food Sci. Technol. 2013;33:60–67. doi: 10.1590/S0101-20612013005000023. DOI
Yildiz G., Palma S., Feng H. Ultrasonic Cutting as a New Method to Produce Fresh-Cut Red Delicious and Golden Delicious Apples. J. Food Sci. 2019;84:3391–3398. doi: 10.1111/1750-3841.14798. PubMed DOI
Cantwell M.I., Suslow T.V. Postharvest handling systems: Fresh-cut fruits and vegetables. In: Kader A.A., editor. Postharvest Technology of Horticultural Crops. University of California; Oakland, CA, USA: 2002. pp. 445–465.
Khan S.A., Beekwilder J., Schaart J.G., Mumm R., Soriano J.M., Jacobsen E., Schouten H.J. Differences in acidity of apples are probably mainly caused by a malic acid transporter gene on LG16. Tree Genet. Genomes. 2013;9:475–487. doi: 10.1007/s11295-012-0571-y. DOI
Berüter J. Carbohydrate metabolism in two apple genotypes that differ in malate accumulation. J. Plant Physiol. 2004;161:1011–1029. doi: 10.1016/j.jplph.2003.12.008. PubMed DOI
Piagentini A.M., Pirovani M.E. Total phenolics content, antioxidant capacity, physicochemical attributes, and browning susceptibility of different apple cultivars for minimal processing. Int. J. Fruit Sci. 2017;17:102–116. doi: 10.1080/15538362.2016.1262304. DOI
Putnik P., Bursać Kovačević D., Herceg K., Levaj B. Influence of antibrowning solutions, air exposure, and ultrasound on color changes in fresh-cut apples during storage. J. Food Process. Pres. 2017;41:e13288. doi: 10.1111/jfpp.13288. DOI
Remorini D., Landi M., Tardelli F., Lugani A., Massai R., Graziani G., Fogliano V., Guidi L. Effect of Chlorine Dioxide and Ascorbic Acid on Enzymatic Browning and Shelf Life of Fresh-Cut Red Delicious and Granny Smith Apples. J. Food Process. Pres. 2015;39:2925–2934. doi: 10.1111/jfpp.12544. DOI
Burdurlu H.S., Karadeniz F. Effect of storage on nonenzymatic browning of apple juice concentrates. Food Chem. 2003;80:91–97. doi: 10.1016/S0308-8146(02)00245-5. DOI
Nicolas J.J., Richard-Forget F.C., Goupy P.M., Amiot M.J., Aubert S.Y. Enzymatic browning reactions in apple and apple products. Crit. Rev. Food Sci. 1994;34:109–157. doi: 10.1080/10408399409527653. PubMed DOI
Zhang X., Liu Y., Yong H., Qin Y., Liu J., Liu J. Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract. Food Hydrocoll. 2019;94:80–92. doi: 10.1016/j.foodhyd.2019.03.009. DOI
Pereira Jr V.A., de Arruda I.N.Q., Stefani R. Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as time–temperature indicators for application in intelligent food packaging. Food Hydrocoll. 2015;43:180–188. doi: 10.1016/j.foodhyd.2014.05.014. DOI
Williams M., Hrazdina G. Anthocyanins as food colorants: Effect of pH on the formation of anthocyanin-rutin complexes. J. Food Sci. 1979;44:66–68. doi: 10.1111/j.1365-2621.1979.tb10005.x. DOI