• This record comes from PubMed

Implants Survival Rate in Regenerated Sites with Innovative Graft Biomaterials: 1 Year Follow-Up

. 2021 Sep 14 ; 14 (18) : . [epub] 20210914

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

In thirteen different dental clinics in Singapore, Spain, Czech Republic and Italy, 504 patients were selected, and 483 dental implants were placed in maxillary sites after alveolar socket preservation (ASP) procedures with an autologous demineralized tooth extracted as graft material from an innovative Tooth Transformer device was obtained. All procedures used were reported in n°638 Ethical Committee surgical protocol of University of Chieti and approved. After 4 months, at dental implant placing, bone biopsies were performed to evaluate the histologic outcomes, and 12 months after implant loading, global implant survival rate, failure percentage and peri-implant bone loss were detected. After ASP, only 27 post-operative complications were observed and after 4 months, bone biopsy histomorphometric analysis showed a high percentage of bone volume (BV) 43.58 (±12.09), and vital new bone (NB) 32.38 (±17.15) with an absence of inflammation or necrosis areas. Twelve months after loading, only 10 dental implants failed (2.3%), with a 98.2% overall implant survival rate, nine cases showed mucositis (1.8%) and eight showed peri-implantitis (1.6%). At mesial sites, 0.43 mm (±0.83) of bone loss around the implants was detected and 0.23 mm (±0.38) at the distal sites with an average value of 0.37 mm (±0.68) (p > 0.568). Several studies with a longer follow-up will be necessary to confirm the preliminary data observed. However, clinical results seem to suggest that the post-extraction socket preservation procedure using innovative demineralized autologous tooth-derived biomaterial may be a predictable procedure to produce new vital bone able to support dental implant rehabilitation of maxilla edentulous sites.

See more in PubMed

Emami E., de Souza R.F., Kabawat M., Feine J.S. The Impact of Edentulism on Oral and General Health. Int. J. Dent. 2013;2013:498305. doi: 10.1155/2013/498305. PubMed DOI PMC

Hong D.G.K., Oh J.H. Recent advances in dental implants. Maxillofac. Plast. Reconstr. Surg. 2017;39:33. doi: 10.1186/s40902-017-0132-2. PubMed DOI PMC

Buser D., Sennerby L., De Bruyn H. Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontol. 2000. 2017;73:7–21. doi: 10.1111/prd.12185. PubMed DOI

Pjetursson B.E., Thoma D., Jung R., Zwahlen M., Zembic A. A systematic review of the survival and complication rates of implantsupported fixed dental prostheses (FDPs) after a mean observation period of at least 5 years. Clin. Oral Implant. Res. 2012;23:22–38. doi: 10.1111/j.1600-0501.2012.02546.x. PubMed DOI

Esposito M., Grusovin M.G., Polyzos I.P., Felice P., Worthington H.V. Timing of implant placement after tooth extraction: Immediate, immediatedelayed or delayed implants? A Cochrane systematic review. Eur. J. Oral Implantol. 2010;3:189–205. PubMed

Hansson S., Halldin A. Alveolar ridge resorption after tooth extraction: A consequence of a fundamental principle of bone physiology. J. Dent. Biomech. 2012;3:1758736012456543. doi: 10.1177/1758736012456543. PubMed DOI PMC

Lang N.P., Pun L., Lau K.Y., Wong M.C. A systematic review on survival and success rates of implants placed immediately into fresh extraction sockets after at least 1 year. Clin. Oral Implant. Res. 2012;23:39–66. doi: 10.1111/j.1600-0501.2011.02372.x. PubMed DOI

Albrektsson T., Donos N., Working G. Implant survival and complications: The Third EAO consensus conference 2012. Clin. Implant. Res. 2012;23:63–65. doi: 10.1111/j.1600-0501.2012.02557.x. PubMed DOI

Schropp L., Wenzel A. Timing of single implant placement and long-term observation of marginal bone levels. Eur. J Oral Implantol. 2016;9:S107–S122. PubMed

Araújo M.G., Lindhe J. Ridge alterations following tooth extraction with and without flap elevation: An experimental study in the dog. Clin. Oral Implant. Res. 2009;20:545–549. doi: 10.1111/j.1600-0501.2008.01703.x. PubMed DOI

Crespi R., Capparè P., Polizzi E.M., Gherlone E.F. Tissue remodeling after bone expansion in grafted and ungrafted sockets. Int. J. Oral Maxillofac. Implant. 2014;29:699–704. doi: 10.11607/jomi.3535. PubMed DOI

Chappuis V., Araújo M.G., Buser D. Clinical relevance of dimensional bone and soft tissue alterations post-extraction in esthetic sites. Periodontol. 2000. 2017;73:73–83. doi: 10.1111/prd.12167. PubMed DOI

Zhao L., Wei Y., Xu T., Zhang B., Hu W., Chung K.H. Changes in alveolar process dimensions following extraction of molars with advanced periodontal disease: A clinical pilot study. Clin. Oral Implant. Res. 2019;30:324–335. doi: 10.1111/clr.13418. PubMed DOI

Bittner N., Planzos L., Volchonok A., Tarnow D., Schulze-Späte U. Evaluation of Horizontal and Vertical Buccal Ridge Dimensional Changes After Immediate Implant Placement and Immediate Temporization with and without Bone Augmentation Procedures: Short-Term, 1-Year Results. A Randomized Controlled Clinical Trial. Int. J. Periodontics Restor. Dent. 2020;40:83–93. doi: 10.11607/prd.4152. PubMed DOI

Borges T., Fernandes D., Almeida B., Pereira M., Martins D., Azevedo L., Marques T. Correlation between alveolar bone morphology and volumetric dimensional changes in immediate maxillary implant placement: A 1-year prospective cohort study. J. Periodontol. 2020;91:1167–1176. doi: 10.1002/JPER.19-0606. PubMed DOI

Bauer T.W., Muschler C.F. Bone graft materials: An overview of the basic science. Clin. Orthop. 2000;371:10–27. doi: 10.1097/00003086-200002000-00003. PubMed DOI

Von Arx T., Hardt N., Walkmann B. The time technique:a new technique for localized alveolar ridge augmentation prior to placement of dental implants. Int. J. Oral Maxillofac. Implant. 1996;11:387–394. PubMed

Tomasi C., Donati M., Cecchinato D., Szathvary I., Corrà E., Lindhe J. Effect of socket grafting with deproteinized bone mineral: An RCT on dimensional alterations after 6 months. Clin. Oral Implant. Res. 2018;29:435–442. doi: 10.1111/clr.13141. PubMed DOI

Mastrangelo F., Quaresima R., Grilli A., Tettamanti L., Vinci R., Sammartino G., Tetè S., Gherlone E. A comparison of bovine bone and hydroxyapatite scaffolds during initial bone regeneration: An in vitro evaluation. Implant. Dent. 2013;22:613–622. doi: 10.1097/ID.0b013e3182a69858. PubMed DOI

Di Raimondo R., Sanz-Esporrín J., Sanz-Martin I., Plá R., Luengo F., Vignoletti F., Nuñez J., Sanz M. Hard and soft tissue changes after guided bone regeneration using two different barrier membranes: An experimental in vivo investigation. Clin. Oral Investig. 2021;25:2213–2227. doi: 10.1007/s00784-020-03537-5. PubMed DOI

Manavella V., Romano F., Corano L., Bignardi C., Aimetti M. Three-Dimensional Volumetric Changes in Severely Resorbed Alveolar Sockets after Ridge Augmentation with Bovine-Derived Xenograft and Resorbable Barrier: A Preliminary Study on CBCT Imaging. Int. J. Oral Maxillofac. Implant. 2018;33:373–382. doi: 10.11607/jomi.5684. PubMed DOI

Mastrangelo F., Gastaldi G., Vinci R., Troiano G., Tettamanti L., Gherlone E., Lo Muzio L. Immediate Postextractive Implants With and Without Bone Graft: 3-year Follow-up Results From a Multicenter Controlled Randomized Trial. Implant. Dent. 2018;27:638–645. doi: 10.1097/ID.0000000000000816. PubMed DOI

Botilde G., Colin P.E., González-Martín O., Lecloux G., Rompen E., Lambert F. Hard and soft tissue analysis of alveolar ridge preservation in esthetic zone using deproteinized bovine bone mineral and a saddle connective tissue graft: A long-term prospective case series. Clin. Implant. Dent. Relat. Res. 2020;22:387–396. doi: 10.1111/cid.12899. PubMed DOI

Zizzari V.L., Zara S., Tetè G., Vinci R., Gherlone E., Cataldi A. Biologic and clinical aspects of integration of different bone substitutes in oral surgery: A literature review. Oral Surg. Orla Med. Pathol. Oral Radiol. 2016;122:392–402. doi: 10.1016/j.oooo.2016.04.010. PubMed DOI

Jung R.E., Zembic A., Pjetursson B.E., Zwahlen M., Thoma D.S. Systematic review of the survival rate and the incidence of biological, technical, and aesthetic complications of single crowns on implants reported in longitudinal studies with a mean follow-up of 5 years. Clin. Oral Implant. Res. 2012;23:2–21. doi: 10.1111/j.1600-0501.2012.02547.x. PubMed DOI

Compton S.M., Clark D., Chan S., Kuc I., Wubie B.A., Levin L. Dental implants in the elderly population: A long term follow-up. Int. J. Oral Maxillofac. Implant. 2017;32:164–170. doi: 10.11607/jomi.5305. PubMed DOI

Howe M.S., Keys W., Richards D. Long-term (10-year) dental implant survival: A systematic review and sensitivity meta-analysis. J. Dent. 2019;84:9–21. doi: 10.1016/j.jdent.2019.03.008. PubMed DOI

Nassani M.Z. What is the survival rate of dental implants placed at sites of failed implants? Evid. Based Dent. 2019;20:95–96. doi: 10.1038/s41432-019-0047-0. PubMed DOI

Alghamdi H.S., Jansen J.A. The development and future of dental implants. Dent. Mater. J. 2020;39:167–172. doi: 10.4012/dmj.2019-140. PubMed DOI

Oh S.L., Shiau H.J., Reynolds M.A. Survival of dental implants at sites after implant failure: A systematic review. J. Prosthet. Dent. 2020;123:54–60. doi: 10.1016/j.prosdent.2018.11.007. PubMed DOI

Manz M. Factors Associated With Radiographic Vertical Bone Loss Around Implants Placed in a Clinical Study. Ann. Periodontol. 2000;5:137–151. doi: 10.1902/annals.2000.5.1.137. PubMed DOI

Apostolopoulos P., Darby I. Retrospective success and survival rates of dental implants placed after a ridge preservation procedure. Clin. Oral Implant. Res. 2016;26:461–468. doi: 10.1111/clr.12820. PubMed DOI

Maiorana C., Poli P.P., Deflorian M., Testori T., Mandelli F., Nagursky H., Vinci R. Alveolar socket preservation with demineralised bovine bone mineral and a collagen matrix. J. Periodontal Implant. Sci. 2017;47:194–210. doi: 10.5051/jpis.2017.47.4.194. PubMed DOI PMC

Crespi R., Toti P., Covani U., Crespi G., Brevi B., Menchini G.B. fabris Bone assessment in grafted and ungrafted pocket after dental implant placement: A 10 year follow up study. Int. J. Oral Maxillofac. Implant. 2020;35:576–584. doi: 10.11607/jomi.7969. PubMed DOI

Minetti E., Palermo A., Contessi M., Gambardella U., Schmitz J.H., Giacometti E., Celko M., Trisi P. Autologous tooth graft for maxillary sinus augmentation: A multicenter clinical study. Int. J. Growth Factors Stem. Cells Dent. 2019;2:45–51. doi: 10.4103/GFSC.GFSC_13_19. DOI

Minetti E., Berardini M., Trisi P. A new tooth processing apparatous allowing to obtain dentin grafts for bone augmentation: The tooth transformer. Open Dent. J. 2019;13:6–14. doi: 10.2174/1874210601913010006. DOI

Minetti E., Palermo A., Ferrante F., Schmitz J., Ho H.K.H., Haan SNg D., Giacometti E., Gambardella U., Contessi M., Celko M., et al. Autologous tooth graft after endodontical treated used for socket preservation: A multicenter clinical study. Appl. Sci. 2019;9:5396. doi: 10.3390/app9245396. DOI

Minetti E., Giacometti E., Gambardella U., Contessi M., Celko M., Marenzi G., Mastrangelo F. Alevolar socket preservation with different autologous graft materials: Preliminary results of a multicenter pilot study in human. Materials. 2020;13:1153. doi: 10.3390/ma13051153. PubMed DOI PMC

Berglundh T., Armitage G., Araujo M.G., Avila-Ortiz G., Blanco J., Camargo P.M., Chen S., Cochran D., Derks J., Figuero E., et al. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol. 2018;45:S286–S291. doi: 10.1111/jcpe.12957. PubMed DOI

Minetti E., Casasco A., Casasco M., Corbella S., Giacometti E., Ho H.K.L., Palermo A., Savadori P., Taschieri S. Bone Regeneration in Implantology: Tooth as a Graft. 2021 EDRA ed. Edra Publishing US; Palm Beach Gardens, FL, USA:

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...