Pentamethinium Salts Nanocomposite for Electrochemical Detection of Heparin
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MSMT No. 21-VV/2021
specific university research
204064
UNCE
PubMed
34576581
PubMed Central
PMC8465147
DOI
10.3390/ma14185357
PII: ma14185357
Knihovny.cz E-zdroje
- Klíčová slova
- gold nanoparticles, heparin, nanocomposite, voltammetric sensor, γ-substituted pentamethinium salts,
- Publikační typ
- časopisecké články MeSH
This study presents a simple route to heparin detection and develops a voltammetric approach using supramolecular principles and nanomaterials. Nanocomposites, including gold nanoparticles (AuNPs) and γ-substituted pentamethinium salts (PMS) deposited on a glass carbon (GC) electrode surface (GC/AuNPs/PMS) and covered by a plasticized poly(vinyl chloride) (PVC) membrane, are proposed for heparin detection. The conductivity of the nonconducting PVC-plasticized membrane is guaranteed by AuNPs, and the selectivity is provided by the interaction between γ-substituted PMS and anionic analytes. In order to extend the linear range, it is necessary to apply a solvent compatible with PVC-plasticized membrane, namely tetrahydrofuran. The proposed voltammetric sensor showed a concentration dependence from 1.72 up to 45.02 IU mL-1 heparin and was used for heparin detection in saline and biological samples with recovery of 95.1-100.9%.
Zobrazit více v PubMed
Guo J., Amemiya S. Voltammetric Heparin-Selective Electrode Based on Thin Liquid Membrane with Conducting Polymer-Modified Solid Support. Anal. Chem. 2006;78:6893–6902. doi: 10.1021/ac061003i. PubMed DOI
Zhou M., Dong S. Bioelectrochemical Interface Engineering: Toward the Fabrication of Electrochemical Biosensors, Biofuel Cells, and Self-Powered Logic Biosensors. Acc. Chem. Res. 2011;44:1232–1243. doi: 10.1021/ar200096g. PubMed DOI
Lei J., Ju H. Signal amplification using functional nanomaterials for biosensing. Chem. Soc. Rev. 2012;41:2122–2134. doi: 10.1039/c1cs15274b. PubMed DOI
Han F., Qi X., Li L., Bu L., Fu Y., Xie Q., Guo M., Li Y., Ying Y., Yao S. Bio-Inspired Preparation of Fibrin-Boned Bionanocomposites of Biomacromolecules and Nanomaterials for Biosensing. Adv. Funct. Mater. 2014;24:5011–5018. doi: 10.1002/adfm.201400458. DOI
Jiang X., Wang H., Yuan R., Chai Y. Functional Three-Dimensional Porous Conductive Polymer Hydrogels for Sensitive Electrochemiluminescence in Situ Detection of H2O2 Released from Live Cells. Anal. Chem. 2018;90:8462–8469. doi: 10.1021/acs.analchem.8b01168. PubMed DOI
Han C., Doepke A., Cho W., Likodimos V., de la Cruz A.A., Back T., Heineman W.R., Halsall H.B., Shanov V.N., Schulz M.J., et al. A Multiwalled-Carbon-Nanotube-Based Biosensor for Monitoring Microcystin-LR in Sources of Drinking Water Supplies. Adv. Funct. Mater. 2013;23:1807–1816. doi: 10.1002/adfm.201201920. DOI
Gao X., Dong S., Fu L., Zhang B., Hsu H.-Y., Zou G. Use of Triangular Silver Nanoplates as Low Potential Redox Mediators for Electrochemical Sensing. Anal. Chem. 2021;93:3295–3300. doi: 10.1021/acs.analchem.0c05342. PubMed DOI
Ahuja T., Kumar D. Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sens. Actuators B Chem. 2009;136:275–286. doi: 10.1016/j.snb.2008.09.014. DOI
John A., Benny L., Cherian A.R., Narahari S.Y., Varghese A., Hegde G. Electrochemical sensors using conducting polymer/noble metal nanoparticle nanocomposites for the detection of various analytes: A review. J. Nanostruct. Chem. 2021;11:1–31. doi: 10.1007/s40097-020-00372-8. DOI
Rimpelová S., Bříza T., Králová J., Záruba K., Kejík Z., Císařová I., Martásek P., Ruml T., Král V. Rational Design of Chemical Ligands for Selective Mitochondrial Targeting. Bioconjug. Chem. 2013;24:1445–1454. doi: 10.1021/bc400291f. PubMed DOI
Akimkin T.M., Tatikolov A.S., Panova I.G., Yarmoluk S.M. Spectral study of the noncovalent interaction of thiacarbocyanine dyes with hyaluronic acid. High Energy Chem. 2011;45:515–520. doi: 10.1134/S0018143911060026. DOI
Volpi N. Therapeutic applications of glycosaminoglycans. Curr. Med. Chem. 2006;13:1799–1810. doi: 10.2174/092986706777452470. PubMed DOI
Köwitsch A., Zhou G., Groth T. Medical application of glycosaminoglycans: A review. J. Tissue Eng. Regen. Med. 2018;12:e23–e41. doi: 10.1002/term.2398. PubMed DOI
Sodhi H., Panitch A. Glycosaminoglycans in Tissue Engineering: A Review. Biomolecules. 2020;11:29. doi: 10.3390/biom11010029. PubMed DOI PMC
Lindahl U. ‘Heparin’—From anticoagulant drug into the new biology. Glycoconj. J. 2000;17:597–605. doi: 10.1023/A:1011030711317. PubMed DOI
Yun J.H., Han I.S., Chang L.-C., Ramamurthy N., Meyerhoff M.E., Yang V.C. Electrochemical sensors for polyionic macromolecules: Development and applications in pharmaceutical research. Pharm. Sci. Technol. Today. 1999;2:102–110. doi: 10.1016/S1461-5347(99)00121-2. PubMed DOI
Capila I., Linhardt R.J. Heparin—Protein interactions. Angew. Chem. Int. Ed. 2002;41:390–412. doi: 10.1002/1521-3773(20020201)41:3<390::AID-ANIE390>3.0.CO;2-B. PubMed DOI
Ferguson S.A., Meyerhoff M.E. Advances in electrochemical and optical polyion sensing: A review. Sens. Actuators B Chem. 2018;272:643–654. doi: 10.1016/j.snb.2018.06.127. DOI
Bříza T., Kejík Z., Císařová I., Králová J., Martásek P., Král V. Optical sensing of sulfate by polymethinium salt receptors: Colorimetric sensor for heparin. Chem. Commun. 2008;16:1901–1903. doi: 10.1039/b718492a. PubMed DOI
Bříza T., Rimpelová S., Králová J., Záruba K., Kejík Z., Ruml T., Martásek P., Král V. Pentamethinium fluorescent probes: The impact of molecular structure on photophysical properties and subcellular localization. Dye. Pigment. 2014;107:51–59. doi: 10.1016/j.dyepig.2013.12.021. DOI
Bříza T., Králová J., Rimpelová S., Havlík M., Kaplánek R., Kejík Z., Martásek P., Mikula I., Džubák P., Hajdúch M., et al. Pentamethinium salts as ligands for cancer: Sulfated polysaccharide co-receptors as possible therapeutic target. Bioorg. Chem. 2019;82:74–85. doi: 10.1016/j.bioorg.2018.02.011. PubMed DOI
Rezanka P., Navrátilová K., Žvátora P., Sýkora D., Matějka P., Miksik I., Kašička V., Kral V. Cyclodextrin modified gold nanoparticles-based open-tubular capillary electrochromatographic separations of polyaromatic hydrocarbons. J. Nanopart. Res. 2011;13:5947–5957. doi: 10.1007/s11051-011-0437-5. DOI
Hammond J.L., Formisano N., Estrela P., Carrara S., Tkac J. Electrochemical biosensors and nanobiosensors. Essays Biochem. 2016;60:69–80. doi: 10.1042/ebc20150008. PubMed DOI PMC
Casu B. Methods of Structural analysis. In: Lane D.A., Lindahl U., editors. Heparin, Chemical and Biological Properties, Clinical Applications. Edward Arnold; London, UK: 1989. pp. 25–51.
Nieduszynski I.X. General physical properties of heparin. In: Lane D.A., Lindahl U., editors. Heparin, Chemical and Biological Properties, Clinical Applications. Edward Arnold; London, UK: 1989. pp. 51–65.
Bromfield S.M., Wilde E., Smith D.K. Heparin sensing and binding—Taking supramolecular chemistry towards clinical applications. Chem. Soc. Rev. 2013;42:9184–9195. doi: 10.1039/c3cs60278h. PubMed DOI
Rezanka P., Záruba K., Král V. A change in nucleotide selectivity pattern of porphyrin derivatives after immobilization on gold nanoparticles. Tetrahedron Lett. 2008;49:6448–6453. doi: 10.1016/j.tetlet.2008.08.099. DOI
Shishkanova T.V., Videnská K., Antonova S.G., Krondak M., Fitl P., Kopecký D., Vrňata M., Kral V. Application of polyaniline for potentiometric recognition of salicylate and its analogues. Electrochim. Acta. 2014;115:553–558. doi: 10.1016/j.electacta.2013.10.214. DOI
Batchelor-McAuley C., Gonçalves L.M., Xiong L., Barros A.A., Compton R.G. Controlling voltammetric responses by electrode modification; using adsorbed acetone to switch graphite surfaces between adsorptive and diffusive modes. Chem. Commun. 2010;46:9037–9039. doi: 10.1039/c0cc03961f. PubMed DOI
Meyerhoff M.E., Yang V.C., Wahr J.A., Lee L.M., Yun J.H. Potentiometric Polyion Sensors: New Measurement Technology for Monitoring Blood Heparin Concentrations During Open Heart Surgery. Clin. Chem. 1995;41:1355–1356. doi: 10.1093/clinchem/41.9.1355. DOI
Mao C., Yuan D., Wang L., Bakker E. Separating boundary potential changes at thin solid contact ion transfer voltammetric membrane electrodes. J. Electroanal. Chem. 2021;880:114800. doi: 10.1016/j.jelechem.2020.114800. DOI
Ma S.C., Yang V.C., Fu B., Meyerhoff M.E. Electrochemical sensor for heparin: Further characterization and bioanalytical applications. Anal. Chem. 1993;65:2078–2084. doi: 10.1021/ac00063a024. PubMed DOI
Yun J.H., Ma S.-C., Fu B., Yang V.C., Meyerhoff M.E. Direct potentiometric membrane electrode measurements of heparin binding to macromolecules. Electroanalisys. 1993;5:719–724. doi: 10.1002/elan.1140050903. DOI