• This record comes from PubMed

Application of Capillary and Free-Flow Zone Electrophoresis for Analysis and Purification of Antimicrobial β-Alanyl-Tyrosine from Hemolymph of Fleshfly Neobellieria bullata

. 2021 Sep 16 ; 26 (18) : . [epub] 20210916

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
20-03899S Grantová Agentura České Republiky
RVO 61388963 Akademie Věd České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000729 The European Regional Development Fund; OP RDE; Project: "Chemical biology for drugging undruggable targets (ChemBioDrug)"

Links

PubMed 34577107
PubMed Central PMC8469924
DOI 10.3390/molecules26185636
PII: molecules26185636
Knihovny.cz E-resources

The problem of a growing resistance of bacteria and other microorganisms to conventional antibiotics gave rise to a search for new potent antimicrobial agents. Insect antimicrobial peptides (AMPs) seem to be promising novel potential anti-infective therapeutics. The dipeptide β-alanyl-tyrosine (β-Ala-Tyr) is one of the endogenous insect toxins exhibiting antibacterial activity against both Gram-negative and Gram-positive bacteria. Prior to testing its other antimicrobial activities, it has to be prepared in a pure form. In this study, we have developed a capillary zone electrophoresis (CZE) method for analysis of β-Ala-Tyr isolated from the extract of the hemolymph of larvae of the fleshfly Neobellieria bullata by reversed-phase high-performance liquid chromatography (RP-HPLC). Based on our previously described correlation between CZE and free-flow zone electrophoresis (FFZE), analytical CZE separation of β-Ala-Tyr and its admixtures have been converted into preparative purification of β-Ala-Tyr by FFZE with preparative capacity of 45.5 mg per hour. The high purity degree of the β-Ala-Tyr obtained by FFZE fractionation was confirmed by its subsequent CZE analysis.

See more in PubMed

CDC’s Antibiotic Resistance Threats in the United States. U.S. Department of Health and Human Services, CDC; Atlanta, GA, USA: 2019.

World Health Organization Antimicrobial Resistance. 2020. [(accessed on 14 September 2021)]. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance.

Mahlapuu M., Bjorn C., Ekblom J. Antimicrobial peptides as therapeutic agents: Opportunities and challenges. Crit. Rev. Biotechnol. 2020;40:978–992. doi: 10.1080/07388551.2020.1796576. PubMed DOI

Datta S., Roy A. Antimicrobial Peptides as Potential Therapeutic Agents: A Review. Int. J. Pept. Res. Ther. 2021;27:555–577. doi: 10.1007/s10989-020-10110-x. DOI

Manniello M.D., Moretta A., Salvia R., Scieuzo C., Lucchetti D., Vogel H., Sgambato A., Falabella P. Insect antimicrobial peptides: Potential weapons to counteract the antibiotic resistance. Cell. Mol. Life Sci. 2021;78:4259–4282. doi: 10.1007/s00018-021-03784-z. PubMed DOI PMC

Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–395. doi: 10.1038/415389a. PubMed DOI

Mangoni M.L., McDermott A.M., Zasloff M. Antimicrobial peptides and wound healing: Biological and therapeutic considerations. Exp. Dermatol. 2016;25:167–173. doi: 10.1111/exd.12929. PubMed DOI PMC

Ye G.Z., Wu H.Y., Huang J.J., Wang W., Ge K.K., Li G.D., Zhong J., Huang Q.S. LAMP2: A major update of the database linking antimicrobial peptides. Database. 2020;2020:baaa061. doi: 10.1093/database/baaa061. PubMed DOI PMC

Mylonakis E., Podsiadlowski L., Muhammed M., Vilcinskas A. Diversity, evolution and medical applications of insect antimicrobial peptides. Phil. Trans. R. Soc. B. 2016;371:20150290. doi: 10.1098/rstb.2015.0290. PubMed DOI PMC

Levenbook L., Bodnaryk R.P., Spande T.F. Beta-Alanyl-L-Tyrosine—Chemical Synthesis, Properties and Occurrence in Larvae of Fleshfly Sarcophaga. Bullata Parker. Biochem. J. 1969;113:837–841. PubMed PMC

Chiou S.J., Kotanen S., Cerstiaens A., Daloze D., Pasteels J.M., Lesage A., Drijfhout J.W., Verhaert P., Dillen L., Claeys M., et al. Purification of toxic compounds from larvae of the gray fleshfly: The identification of paralysins. Biochem. Biophys. Res. Commun. 1998;246:457–462. doi: 10.1006/bbrc.1998.8644. PubMed DOI

Meylaers K., Cerstiaens A., Vierstraete E., Baggerman G., Michiels C.W., De Loof A., Schoofs L. Antimicrobial compounds of low molecular mass are constitutively present in insects: Characterisation of beta-alanyl-tyrosine. Curr. Pharm. Des. 2003;9:159–174. doi: 10.2174/1381612033392279. PubMed DOI

Ciencialova A., Neubauerova T., Sanda M., Sindelka R., Cvacka J., Voburka Z., Budesinsky M., Kasicka V., Sazelova P., Solinova V., et al. Mapping the peptide and protein immune response in the larvae of the fleshfly Sarcophaga. Bullata. J. Pept. Sci. 2008;14:670–682. doi: 10.1002/psc.967. PubMed DOI

Ta H.Y., Collin F., Perquis L., Poinsot V., Ong-Meang V., Couderc F. Twenty years of amino acid determination using capillary electrophoresis: A review. Anal. Chim. Acta. 2021;1174:338233. doi: 10.1016/j.aca.2021.338233. PubMed DOI

Kasicka V. Recent developments in capillary and microchip electroseparations of peptides (2017–mid 2019) Electrophoresis. 2020;41:10–35. doi: 10.1002/elps.201900269. PubMed DOI

Stepanova S., Kasicka V. Recent applications of capillary electromigration methods to separation and analysis of proteins. Anal. Chim. Acta. 2016;933:23–42. doi: 10.1016/j.aca.2016.06.006. PubMed DOI

Torano J.S., Ramautar R., de Jong G. Advances in capillary electrophoresis for the life sciences. J. Chromatogr. B. 2019;1118:116–136. doi: 10.1016/j.jchromb.2019.04.020. PubMed DOI

Kristoff C.J., Bwanali L., Veltri L.M., Gautam G.P., Rutto P.K., Newton E.O., Holland L.A. Challenging Bioanalyses with Capillary Electrophoresis. Anal. Chem. 2020;92:49–66. doi: 10.1021/acs.analchem.9b04718. PubMed DOI PMC

Huge B.J., Flaherty R.J., Dada O.O., Dovichi N.J. Capillary electrophoresis coupled with automated fraction collection. Talanta. 2014;130:288–293. doi: 10.1016/j.talanta.2014.07.018. PubMed DOI PMC

Haraga T., Tsujimura H., Miyauchi S., Kamimura T., Shibukawa M., Saito S. Purification of anionic fluorescent probes through precise fraction collection with a two-point detection system using multiple-stacking preparative capillary transient isotachophoresis. Electrophoresis. 2020;41:1152–1159. doi: 10.1002/elps.201900399. PubMed DOI

Kasicka V. From micro to macro: Conversion of capillary electrophoretic separations of biomolecules and bioparticles to preparative free-flow electrophoresis scale. Electrophoresis. 2009;30:S40–S52. doi: 10.1002/elps.200900156. PubMed DOI

Stastna M. Continuous flow electrophoretic separation—Recent developments and applications to biological sample analysis. Electrophoresis. 2020;41:36–55. doi: 10.1002/elps.201900288. PubMed DOI

Geiger M., Bowser M.T. Effect of Fluorescent Labels on Peptide and Amino Acid Sample Dimensionality in Two Dimensional nLC x mu FFE Separations. Anal. Chem. 2016;88:2177–2187. doi: 10.1021/acs.analchem.5b03811. PubMed DOI

Xia Z.J., Liu Z., Kong F.Z., Fan L.Y., Xiao H., Cao C.X. Comparison of antimicrobial peptide purification via free-flow electrophoresis and gel filtration chromatography. Electrophoresis. 2017;38:3147–3154. doi: 10.1002/elps.201700187. PubMed DOI

Liu S.L., Madren S., Feng P., Sosic Z. Characterization of the acidic species of a monoclonal antibody using free flow electrophoresis fractionation and mass spectrometry. J. Pharm. Biomed. Anal. 2020;185:113217. doi: 10.1016/j.jpba.2020.113217. PubMed DOI

Dong S., Jiang Z.Q., Liu Z., Chen L., Zhang Q., Tian Y.L., Sohail A., Khan M.I., Xiao H., Liu X.P., et al. Purification of low-abundance lysozyme in egg white via free-flow electrophoresis with gel-filtration chromatography. Electrophoresis. 2020;41:1529–1538. doi: 10.1002/elps.201900479. PubMed DOI

Wang S., Zhang L.Y., Sun H.F., Chu Z.Y., Chen H.H., Zhao Y.M., Zhang W.B. Carrier ampholyte-free free-flow isoelectric focusing for separation of protein. Electrophoresis. 2019;40:2610–2617. doi: 10.1002/elps.201900148. PubMed DOI

Jiang X.T., Liu S., Zhang Y., Ji Y., Sohail A., Cao C.X., Wang P., Xiao H. Free-Flow Isoelectric Focusing for Comprehensive Separation and Analysis of Human Salivary Microbiome for Lung Cancer. Anal. Chem. 2020;92:12017–12025. doi: 10.1021/acs.analchem.0c02627. PubMed DOI

Islinger M., Wildgruber R., Volkl A. Preparative free-flow electrophoresis, a versatile technology complementing gradient centrifugation in the isolation of highly purified cell organelles. Electrophoresis. 2018;39:2288–2299. doi: 10.1002/elps.201800187. PubMed DOI

Malmstrom J., Lee H., Nesvizhskii A.I., Shteynberg D., Mohanty S., Brunner E., Ye M.L., Weber G., Eckerskorn C., Aebersold R. Optimized peptide separation and identification for mass spectrometry based proteomics via free-flow electrophoresis. J. Proteome Res. 2006;5:2241–2249. doi: 10.1021/pr0600632. PubMed DOI

Guo Q., Liu L., Yim W.C., Cushman J.C., Barkla B.J. Membrane Profiling by Free Flow Electrophoresis and SWATH-MS to Characterize Subcellular Compartment Proteomes in Mesembryanthemum crystallinum. Int. J. Mol. Sci. 2021;22:5020. doi: 10.3390/ijms22095020. PubMed DOI PMC

Jender M., Hoving S., Novo P., Freier E., Janasek D. Coupling Miniaturized Free-Flow Electrophoresis to Mass Spectrometry via a Multi-Emitter ESI Interface. Anal. Chem. 2021;93:7204–7209. doi: 10.1021/acs.analchem.1c00200. PubMed DOI

Kinde T.F., Hess N., Dutta D. Enhancement in MS-based peptide detection by microfluidic free-flow zone electrophoresis. Electrophoresis. 2020;41:545–553. doi: 10.1002/elps.201900321. PubMed DOI

Fu X.T., Mavrogiannis N., Ibo M., Crivellari F., Gagnon Z.R. Microfluidic free-flow zone electrophoresis and isotachophoresis using carbon black nano-composite PDMS sidewall membranes. Electrophoresis. 2017;38:327–334. doi: 10.1002/elps.201600104. PubMed DOI

Johnson A.C., Bowser M.T. Micro free flow electrophoresis. Lab Chip. 2018;18:27–40. doi: 10.1039/C7LC01105A. PubMed DOI PMC

Novo P., Janasek D. Current advances and challenges in microfluidic free-flow electrophoresisd-A critical review. Anal. Chim. Acta. 2017;991:9–29. doi: 10.1016/j.aca.2017.08.017. PubMed DOI

Prusik Z., Kasicka V., Mudra P., Stepanek J., Smekal O., Hlavacek J. Correlation of Capillary Zone Electrophoresis with Continuous Free-Flow Zone Electrophoresis: Application to the Analysis and Purification of Synthetic Growth Hormone Releasing Peptide. Electrophoresis. 1990;11:932–936. doi: 10.1002/elps.1150111109. PubMed DOI

Kasicka V., Prusik Z., Pospisek J. Conversion of Capillary Zone Electrophoresis to Free-Flow Zone Electrophoresis Using a Simple Model of Their Correlation: Application to Synthetic Enkephalin-Type Peptide Analysis and Preparation. J. Chromatogr. 1992;608:13–22. doi: 10.1016/0021-9673(92)87101-D. DOI

Kasicka V., Prusik Z., Sazelova P., Jiracek J., Barth T. Theory of the correlation between capillary and free-flow zone electrophoresis and its use for the conversion of analytical capillary separations to continuous free-flow preparative processes: Application to analysis and preparation of fragments of insulin. J. Chromatogr. A. 1998;796:211–220. doi: 10.1016/S0021-9673(97)01114-X. PubMed DOI

Kasicka V., Prusik Z., Smekal O., Hlavacek J., Barth T., Weber G., Wagner H. Application of capillary and free-flow zone electrophoresis and isotachophoresis to the analysis and preparation of the synthetic tetrapeptide fragment of growth hormone-releasing peptide. J. Chromatogr. B. 1994;656:99–106. doi: 10.1016/0378-4347(94)00042-5. PubMed DOI

Prusik Z. Free-flow electromigration separations. J. Chromatogr. 1974;91:867–872. doi: 10.1016/S0021-9673(01)97968-3. DOI

Tumova T., Monincova L., Cerovsky V., Kasicka V. Estimation of acidity constants, ionic mobilities and charges of antimicrobial peptides by capillary electrophoresis. Electrophoresis. 2016;37:3186–3195. doi: 10.1002/elps.201600342. PubMed DOI

Tumova T., Monincova L., Nesuta O., Cerovsky V., Kasicka V. Determination of effective charges and ionic mobilities of polycationic antimicrobial peptides by capillary isotachophoresis and capillary zone electrophoresis. Electrophoresis. 2017;38:2018–2024. doi: 10.1002/elps.201700092. PubMed DOI

Solinova V., Kasicka V., Koval D., Barth T., Ciencialova A., Zakova L. Analysis of synthetic derivatives of peptide hormones by capillary zone electrophoresis and micellar electrokinetic chromatography with ultraviolet-absorption and laser-induced fluorescence detection. J. Chromatogr. B. 2004;808:75–82. doi: 10.1016/j.jchromb.2004.01.062. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...