Application of Capillary and Free-Flow Zone Electrophoresis for Analysis and Purification of Antimicrobial β-Alanyl-Tyrosine from Hemolymph of Fleshfly Neobellieria bullata
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
20-03899S
Grantová Agentura České Republiky
RVO 61388963
Akademie Věd České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000729
The European Regional Development Fund; OP RDE; Project: "Chemical biology for drugging undruggable targets (ChemBioDrug)"
PubMed
34577107
PubMed Central
PMC8469924
DOI
10.3390/molecules26185636
PII: molecules26185636
Knihovny.cz E-resources
- Keywords
- antimicrobial peptides, beta-alanyl-tyrosine, capillary zone electrophoresis, free-flow zone electrophoresis, peptide analysis, peptide purification,
- MeSH
- Anti-Infective Agents chemistry isolation & purification MeSH
- Dipeptides chemistry isolation & purification MeSH
- Electrophoresis methods MeSH
- Hemolymph chemistry MeSH
- Larva chemistry MeSH
- Sarcophagidae chemistry MeSH
- Chromatography, High Pressure Liquid MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- alanyltyrosine MeSH Browser
- Anti-Infective Agents MeSH
- Dipeptides MeSH
The problem of a growing resistance of bacteria and other microorganisms to conventional antibiotics gave rise to a search for new potent antimicrobial agents. Insect antimicrobial peptides (AMPs) seem to be promising novel potential anti-infective therapeutics. The dipeptide β-alanyl-tyrosine (β-Ala-Tyr) is one of the endogenous insect toxins exhibiting antibacterial activity against both Gram-negative and Gram-positive bacteria. Prior to testing its other antimicrobial activities, it has to be prepared in a pure form. In this study, we have developed a capillary zone electrophoresis (CZE) method for analysis of β-Ala-Tyr isolated from the extract of the hemolymph of larvae of the fleshfly Neobellieria bullata by reversed-phase high-performance liquid chromatography (RP-HPLC). Based on our previously described correlation between CZE and free-flow zone electrophoresis (FFZE), analytical CZE separation of β-Ala-Tyr and its admixtures have been converted into preparative purification of β-Ala-Tyr by FFZE with preparative capacity of 45.5 mg per hour. The high purity degree of the β-Ala-Tyr obtained by FFZE fractionation was confirmed by its subsequent CZE analysis.
See more in PubMed
CDC’s Antibiotic Resistance Threats in the United States. U.S. Department of Health and Human Services, CDC; Atlanta, GA, USA: 2019.
World Health Organization Antimicrobial Resistance. 2020. [(accessed on 14 September 2021)]. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance.
Mahlapuu M., Bjorn C., Ekblom J. Antimicrobial peptides as therapeutic agents: Opportunities and challenges. Crit. Rev. Biotechnol. 2020;40:978–992. doi: 10.1080/07388551.2020.1796576. PubMed DOI
Datta S., Roy A. Antimicrobial Peptides as Potential Therapeutic Agents: A Review. Int. J. Pept. Res. Ther. 2021;27:555–577. doi: 10.1007/s10989-020-10110-x. DOI
Manniello M.D., Moretta A., Salvia R., Scieuzo C., Lucchetti D., Vogel H., Sgambato A., Falabella P. Insect antimicrobial peptides: Potential weapons to counteract the antibiotic resistance. Cell. Mol. Life Sci. 2021;78:4259–4282. doi: 10.1007/s00018-021-03784-z. PubMed DOI PMC
Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–395. doi: 10.1038/415389a. PubMed DOI
Mangoni M.L., McDermott A.M., Zasloff M. Antimicrobial peptides and wound healing: Biological and therapeutic considerations. Exp. Dermatol. 2016;25:167–173. doi: 10.1111/exd.12929. PubMed DOI PMC
Ye G.Z., Wu H.Y., Huang J.J., Wang W., Ge K.K., Li G.D., Zhong J., Huang Q.S. LAMP2: A major update of the database linking antimicrobial peptides. Database. 2020;2020:baaa061. doi: 10.1093/database/baaa061. PubMed DOI PMC
Mylonakis E., Podsiadlowski L., Muhammed M., Vilcinskas A. Diversity, evolution and medical applications of insect antimicrobial peptides. Phil. Trans. R. Soc. B. 2016;371:20150290. doi: 10.1098/rstb.2015.0290. PubMed DOI PMC
Levenbook L., Bodnaryk R.P., Spande T.F. Beta-Alanyl-L-Tyrosine—Chemical Synthesis, Properties and Occurrence in Larvae of Fleshfly Sarcophaga. Bullata Parker. Biochem. J. 1969;113:837–841. PubMed PMC
Chiou S.J., Kotanen S., Cerstiaens A., Daloze D., Pasteels J.M., Lesage A., Drijfhout J.W., Verhaert P., Dillen L., Claeys M., et al. Purification of toxic compounds from larvae of the gray fleshfly: The identification of paralysins. Biochem. Biophys. Res. Commun. 1998;246:457–462. doi: 10.1006/bbrc.1998.8644. PubMed DOI
Meylaers K., Cerstiaens A., Vierstraete E., Baggerman G., Michiels C.W., De Loof A., Schoofs L. Antimicrobial compounds of low molecular mass are constitutively present in insects: Characterisation of beta-alanyl-tyrosine. Curr. Pharm. Des. 2003;9:159–174. doi: 10.2174/1381612033392279. PubMed DOI
Ciencialova A., Neubauerova T., Sanda M., Sindelka R., Cvacka J., Voburka Z., Budesinsky M., Kasicka V., Sazelova P., Solinova V., et al. Mapping the peptide and protein immune response in the larvae of the fleshfly Sarcophaga. Bullata. J. Pept. Sci. 2008;14:670–682. doi: 10.1002/psc.967. PubMed DOI
Ta H.Y., Collin F., Perquis L., Poinsot V., Ong-Meang V., Couderc F. Twenty years of amino acid determination using capillary electrophoresis: A review. Anal. Chim. Acta. 2021;1174:338233. doi: 10.1016/j.aca.2021.338233. PubMed DOI
Kasicka V. Recent developments in capillary and microchip electroseparations of peptides (2017–mid 2019) Electrophoresis. 2020;41:10–35. doi: 10.1002/elps.201900269. PubMed DOI
Stepanova S., Kasicka V. Recent applications of capillary electromigration methods to separation and analysis of proteins. Anal. Chim. Acta. 2016;933:23–42. doi: 10.1016/j.aca.2016.06.006. PubMed DOI
Torano J.S., Ramautar R., de Jong G. Advances in capillary electrophoresis for the life sciences. J. Chromatogr. B. 2019;1118:116–136. doi: 10.1016/j.jchromb.2019.04.020. PubMed DOI
Kristoff C.J., Bwanali L., Veltri L.M., Gautam G.P., Rutto P.K., Newton E.O., Holland L.A. Challenging Bioanalyses with Capillary Electrophoresis. Anal. Chem. 2020;92:49–66. doi: 10.1021/acs.analchem.9b04718. PubMed DOI PMC
Huge B.J., Flaherty R.J., Dada O.O., Dovichi N.J. Capillary electrophoresis coupled with automated fraction collection. Talanta. 2014;130:288–293. doi: 10.1016/j.talanta.2014.07.018. PubMed DOI PMC
Haraga T., Tsujimura H., Miyauchi S., Kamimura T., Shibukawa M., Saito S. Purification of anionic fluorescent probes through precise fraction collection with a two-point detection system using multiple-stacking preparative capillary transient isotachophoresis. Electrophoresis. 2020;41:1152–1159. doi: 10.1002/elps.201900399. PubMed DOI
Kasicka V. From micro to macro: Conversion of capillary electrophoretic separations of biomolecules and bioparticles to preparative free-flow electrophoresis scale. Electrophoresis. 2009;30:S40–S52. doi: 10.1002/elps.200900156. PubMed DOI
Stastna M. Continuous flow electrophoretic separation—Recent developments and applications to biological sample analysis. Electrophoresis. 2020;41:36–55. doi: 10.1002/elps.201900288. PubMed DOI
Geiger M., Bowser M.T. Effect of Fluorescent Labels on Peptide and Amino Acid Sample Dimensionality in Two Dimensional nLC x mu FFE Separations. Anal. Chem. 2016;88:2177–2187. doi: 10.1021/acs.analchem.5b03811. PubMed DOI
Xia Z.J., Liu Z., Kong F.Z., Fan L.Y., Xiao H., Cao C.X. Comparison of antimicrobial peptide purification via free-flow electrophoresis and gel filtration chromatography. Electrophoresis. 2017;38:3147–3154. doi: 10.1002/elps.201700187. PubMed DOI
Liu S.L., Madren S., Feng P., Sosic Z. Characterization of the acidic species of a monoclonal antibody using free flow electrophoresis fractionation and mass spectrometry. J. Pharm. Biomed. Anal. 2020;185:113217. doi: 10.1016/j.jpba.2020.113217. PubMed DOI
Dong S., Jiang Z.Q., Liu Z., Chen L., Zhang Q., Tian Y.L., Sohail A., Khan M.I., Xiao H., Liu X.P., et al. Purification of low-abundance lysozyme in egg white via free-flow electrophoresis with gel-filtration chromatography. Electrophoresis. 2020;41:1529–1538. doi: 10.1002/elps.201900479. PubMed DOI
Wang S., Zhang L.Y., Sun H.F., Chu Z.Y., Chen H.H., Zhao Y.M., Zhang W.B. Carrier ampholyte-free free-flow isoelectric focusing for separation of protein. Electrophoresis. 2019;40:2610–2617. doi: 10.1002/elps.201900148. PubMed DOI
Jiang X.T., Liu S., Zhang Y., Ji Y., Sohail A., Cao C.X., Wang P., Xiao H. Free-Flow Isoelectric Focusing for Comprehensive Separation and Analysis of Human Salivary Microbiome for Lung Cancer. Anal. Chem. 2020;92:12017–12025. doi: 10.1021/acs.analchem.0c02627. PubMed DOI
Islinger M., Wildgruber R., Volkl A. Preparative free-flow electrophoresis, a versatile technology complementing gradient centrifugation in the isolation of highly purified cell organelles. Electrophoresis. 2018;39:2288–2299. doi: 10.1002/elps.201800187. PubMed DOI
Malmstrom J., Lee H., Nesvizhskii A.I., Shteynberg D., Mohanty S., Brunner E., Ye M.L., Weber G., Eckerskorn C., Aebersold R. Optimized peptide separation and identification for mass spectrometry based proteomics via free-flow electrophoresis. J. Proteome Res. 2006;5:2241–2249. doi: 10.1021/pr0600632. PubMed DOI
Guo Q., Liu L., Yim W.C., Cushman J.C., Barkla B.J. Membrane Profiling by Free Flow Electrophoresis and SWATH-MS to Characterize Subcellular Compartment Proteomes in Mesembryanthemum crystallinum. Int. J. Mol. Sci. 2021;22:5020. doi: 10.3390/ijms22095020. PubMed DOI PMC
Jender M., Hoving S., Novo P., Freier E., Janasek D. Coupling Miniaturized Free-Flow Electrophoresis to Mass Spectrometry via a Multi-Emitter ESI Interface. Anal. Chem. 2021;93:7204–7209. doi: 10.1021/acs.analchem.1c00200. PubMed DOI
Kinde T.F., Hess N., Dutta D. Enhancement in MS-based peptide detection by microfluidic free-flow zone electrophoresis. Electrophoresis. 2020;41:545–553. doi: 10.1002/elps.201900321. PubMed DOI
Fu X.T., Mavrogiannis N., Ibo M., Crivellari F., Gagnon Z.R. Microfluidic free-flow zone electrophoresis and isotachophoresis using carbon black nano-composite PDMS sidewall membranes. Electrophoresis. 2017;38:327–334. doi: 10.1002/elps.201600104. PubMed DOI
Johnson A.C., Bowser M.T. Micro free flow electrophoresis. Lab Chip. 2018;18:27–40. doi: 10.1039/C7LC01105A. PubMed DOI PMC
Novo P., Janasek D. Current advances and challenges in microfluidic free-flow electrophoresisd-A critical review. Anal. Chim. Acta. 2017;991:9–29. doi: 10.1016/j.aca.2017.08.017. PubMed DOI
Prusik Z., Kasicka V., Mudra P., Stepanek J., Smekal O., Hlavacek J. Correlation of Capillary Zone Electrophoresis with Continuous Free-Flow Zone Electrophoresis: Application to the Analysis and Purification of Synthetic Growth Hormone Releasing Peptide. Electrophoresis. 1990;11:932–936. doi: 10.1002/elps.1150111109. PubMed DOI
Kasicka V., Prusik Z., Pospisek J. Conversion of Capillary Zone Electrophoresis to Free-Flow Zone Electrophoresis Using a Simple Model of Their Correlation: Application to Synthetic Enkephalin-Type Peptide Analysis and Preparation. J. Chromatogr. 1992;608:13–22. doi: 10.1016/0021-9673(92)87101-D. DOI
Kasicka V., Prusik Z., Sazelova P., Jiracek J., Barth T. Theory of the correlation between capillary and free-flow zone electrophoresis and its use for the conversion of analytical capillary separations to continuous free-flow preparative processes: Application to analysis and preparation of fragments of insulin. J. Chromatogr. A. 1998;796:211–220. doi: 10.1016/S0021-9673(97)01114-X. PubMed DOI
Kasicka V., Prusik Z., Smekal O., Hlavacek J., Barth T., Weber G., Wagner H. Application of capillary and free-flow zone electrophoresis and isotachophoresis to the analysis and preparation of the synthetic tetrapeptide fragment of growth hormone-releasing peptide. J. Chromatogr. B. 1994;656:99–106. doi: 10.1016/0378-4347(94)00042-5. PubMed DOI
Prusik Z. Free-flow electromigration separations. J. Chromatogr. 1974;91:867–872. doi: 10.1016/S0021-9673(01)97968-3. DOI
Tumova T., Monincova L., Cerovsky V., Kasicka V. Estimation of acidity constants, ionic mobilities and charges of antimicrobial peptides by capillary electrophoresis. Electrophoresis. 2016;37:3186–3195. doi: 10.1002/elps.201600342. PubMed DOI
Tumova T., Monincova L., Nesuta O., Cerovsky V., Kasicka V. Determination of effective charges and ionic mobilities of polycationic antimicrobial peptides by capillary isotachophoresis and capillary zone electrophoresis. Electrophoresis. 2017;38:2018–2024. doi: 10.1002/elps.201700092. PubMed DOI
Solinova V., Kasicka V., Koval D., Barth T., Ciencialova A., Zakova L. Analysis of synthetic derivatives of peptide hormones by capillary zone electrophoresis and micellar electrokinetic chromatography with ultraviolet-absorption and laser-induced fluorescence detection. J. Chromatogr. B. 2004;808:75–82. doi: 10.1016/j.jchromb.2004.01.062. PubMed DOI