Distinctly Different Morphologies of Bimetallic Au-Ag Nanostructures and Their Application in Submicromolar SERS-Detection of Free Base Porphyrin
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-03207S
Grantová Agentura České Republiky
8J20FR024
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34578501
PubMed Central
PMC8464754
DOI
10.3390/nano11092185
PII: nano11092185
Knihovny.cz E-zdroje
- Klíčová slova
- SERS, TMPyP, bimetallic nanoparticles, free base porphyrin, nanoparticle morphology, non-metalated porphyrin, reactant order, seeded-growth, silver-gold particles,
- Publikační typ
- časopisecké články MeSH
Core-shell Au-Ag nanostructures (Au-AgNSs) are prepared by a seed-meditated growth, i.e., by a two-step process. The synthetic parameters greatly influence the morphologies of the final bimetallic Au-AgNSs, their stability and application potential as surface-enhanced Raman scattering (SERS) substrates. Direct comparison of several types of Au NPs possessing different surface species and serving as seeds in Au-AgNSs synthesis is the main objective of this paper. Borohydride-reduced (with varying stages of borohydride hydrolysis) and citrate-reduced Au NPs were prepared and used as seeds in Au-AgNSs generation. The order of reactants in seed-mediated growth procedure represents another key factor influencing the final Au-AgNSs characteristics. Electronic absorption spectra, dynamic light scattering, zeta potential measurements, energy dispersive spectroscopy and transmission electron microscopy were employed for Au-AgNSs characterization. Subsequently, possibilities and limitations of SERS-detection of unperturbed cationic porphyrin, 5,10,15,20-tetrakis(1-methyl-4-pyridyl)21H,23H-porphine (TMPyP), were investigated by using these Au-AgNSs. Only the free base (unperturbed) SERS spectral form of TMPyP is detected in all types of Au-AgNSs. It reports about a well-developed envelope of organic molecules around each Au-AgNSs which prevents metalation from occuring. TMPyP, attached via ionic interaction, was successfully detected in 10 nM concentration due to Au-AgNSs.
Zobrazit více v PubMed
Bai T., Lu P., Zhang K., Zhou P., Liu Y., Guo Z., Lu X. Gold/silver bimetallic nanocrystals: Controllable synthesis and biomedical applications. J. Biomed. Nanotechnol. 2017;13:1178–1209. doi: 10.1166/jbn.2017.2423. DOI
Gilroy K.D., Ruditskiy A., Peng H.C., Qin D., Xia Y. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016;116:10414–10472. doi: 10.1021/acs.chemrev.6b00211. PubMed DOI
Hutter E., Fendler J.H. Exploitation of localized surface plasmon resonance. Adv. Mater. 2004;16:1685–1706. doi: 10.1002/adma.200400271. DOI
Eustis S., El-Sayed M.A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006;35:209–217. doi: 10.1039/B514191E. PubMed DOI
Odom T.W., Nehl C.L. How gold nanoparticles have stayed in the light: The 3M’s principle. ACS Nano. 2008;2:612–616. doi: 10.1021/nn800178z. PubMed DOI
Schwartzberg A.M., Zhang J.Z. Novel optical properties and emerging applications of metal nanostructures. J. Phys. Chem. C. 2008;112:10323–10337. doi: 10.1021/jp801770w. DOI
Liz-Marzán L.M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir. 2006;22:32–41. doi: 10.1021/la0513353. PubMed DOI
Vinod M., Gopchandran K.G. Bimetallic Au-Ag nanochains as SERS substrates. Curr. Appl. Phys. 2015;15:857–863. doi: 10.1016/j.cap.2015.03.018. DOI
Kumari M.M., Jacob J., Philip D. Green synthesis and applications of Au-Ag bimetallic nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015;137:185–192. doi: 10.1016/j.saa.2014.08.079. PubMed DOI
Tsuji M., Matsuo R., Jiang P., Miyamae N., Ueyama D., Nishio M., Hikino S., Kumagae H., Kamarudin K.S.N., Tang X.L. Shape-dependent evolution of Au@Ag core-shell nanocrystals by PVP-assisted N,N-dimethylformamide reduction. Cryst. Growth Des. 2008;8:2528–2536. doi: 10.1021/cg800162t. DOI
Khlebtsov B.N., Liu Z., Ye J., Khlebtsov N.G. Au@Ag core/shell cuboids and dumbbells: Optical properties and SERS response. J. Quant. Spectrosc. Radiat. Transf. 2015;167:64–75. doi: 10.1016/j.jqsrt.2015.07.024. DOI
Qi Y., Zhu J., Li J.J., Zhao J.W. Multi-mode optical detection of iodide based on the etching of silver-coated gold nanobipyramids. Sensors Actuators B Chem. 2017;253:612–620. doi: 10.1016/j.snb.2017.06.180. DOI
Song L., Mao K., Zhou X., Hu J. A novel biosensor based on Au@Ag core-shell nanoparticles for SERS detection of arsenic (III) Talanta. 2016;146:285–290. doi: 10.1016/j.talanta.2015.08.052. PubMed DOI
Xin J., Zhang F., Gao Y., Feng Y., Chen S., Wu A. A rapid colorimetric detection method of trace Cr (VI) based on the redox etching of Agcore-Aushell nanoparticles at room temperature. Talanta. 2012;101:122–127. doi: 10.1016/j.talanta.2012.09.009. PubMed DOI
Yang Y., Shi J., Kawamura G., Nogami M. Preparation of Au-Ag, Ag-Au core-shell bimetallic nanoparticles for surface-enhanced Raman scattering. Scr. Mater. 2008;58:862–865. doi: 10.1016/j.scriptamat.2008.01.017. DOI
Ghodselahi T., Arsalani S., Neishaboorynejad T. Synthesis and biosensor application of Ag@Au bimetallic nanoparticles based on localized surface plasmon resonance. Appl. Surf. Sci. 2014;301:230–234. doi: 10.1016/j.apsusc.2014.02.050. DOI
Tang X., Tsuji M. Synthesis of Au core Au/Ag alloy shell nanoparticles using branched Au nanoparticles as seeds. Cryst. Eng. Comm. 2011;13:72–76. doi: 10.1039/C0CE00018C. DOI
Mallin M.P., Murphy C.J. Solution-Phase Synthesis of Sub-10 nm Au—Ag Alloy Nanoparticles. Nano Lett. 2002;11:1235–1237. doi: 10.1021/nl025774n. DOI
Han S.W., Kim Y., Kim K. Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles: TEM, UV/VIS, XPS, and FTIR analysis. J. Colloid Interface Sci. 1998;278:272–278. doi: 10.1006/jcis.1998.5812. PubMed DOI
Imura Y., Akiyama R., Furukawa S., Kan R., Morita-Imura C., Komatsu T., Kawai T. Au–Ag Nanoflower Catalysts with Clean Surfaces for Alcohol Oxidation. Chem.-An Asian J. 2019;14:547–552. doi: 10.1002/asia.201801711. PubMed DOI
Rodrigues T.S., Zhao M., Yang T.H., Gilroy K.D., da Silva A.G.M., Camargo P.H.C., Xia Y. Synthesis of Colloidal Metal Nanocrystals: A Comprehensive Review on the Reductants. Chem. Eur. J. 2018;24:16944–16963. doi: 10.1002/chem.201802194. PubMed DOI
Stamplecoskie K.G., Scaiano J.C. Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. J. Am. Chem. Soc. 2010;132:1825–1827. doi: 10.1021/ja910010b. PubMed DOI
Wang Y., Zhang P., Mao X., Fu W., Liu C. Seed-mediated growth of bimetallic nanoparticles as an effective strategy for sensitive detection of Vitamin C. Sensors Actuators B Chem. 2016;231:95–101. doi: 10.1016/j.snb.2016.03.010. DOI
Ding S.J., Zhu J. Tuning the surface enhanced Raman scattering activity of gold nanocubes by silver coating. Appl. Surf. Sci. 2015;357:487–492. doi: 10.1016/j.apsusc.2015.09.077. DOI
Pei L., Ou Y., Yu W., Fan Y., Huang Y., Lai K. Au-Ag Core-Shell Nanospheres for Surface-Enhanced Raman Scattering Detection of Sudan i and Sudan II in Chili Powder. J. Nanomater. 2015;16:215. doi: 10.1155/2015/430925. DOI
Contreras-Caceres R., Dawson C., Formanek P., Fischer D., Simon F., Janke A., Uhlmann P., Stamm M. Polymers as templates for au and Au@Ag bimetallic nanorods: Uv-vis and surface enhanced raman spectroscopy. Chem. Mater. 2013;25:158–169. doi: 10.1021/cm3031329. DOI
Sau T.K., Murphy C.J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir. 2004;20:6414–6420. doi: 10.1021/la049463z. PubMed DOI
Bakshi M.S., Possmayer F., Petersen N.O. Role of different phospholipids in the synthesis of pearl-necklace-type gold-silver bimetallic nanoparticles as bioconjugate materials. J. Phys. Chem. C. 2007;111:14113–14124. doi: 10.1021/jp072862t. DOI
Dai L., Song L., Huang Y., Zhang L., Lu X., Zhang J., Chen T. Bimetallic Au/Ag Core-Shell Superstructures with Tunable Surface Plasmon Resonance in the Near-Infrared Region and High Performance Surface-Enhanced Raman Scattering. Langmuir. 2017;33:5378–5384. doi: 10.1021/acs.langmuir.7b00097. PubMed DOI
Zheng P., Hu J., Shen G., Jiang J., Yu R., Liu G. Synthesis, structure and growth mechanism of size and shape tunable Au/Ag bimetallic nanoparticles. Chinese J. Chem. 2009;27:2137–2144. doi: 10.1002/cjoc.200990358. DOI
Yang Z., Chang H.T. Anisotropic syntheses of boat-shaped core-shell Au-Ag nanocrystals and nanowires. Nanotechnology. 2006;17:2304–2310. doi: 10.1088/0957-4484/17/9/039. DOI
Lu L., Burkey G., Halaciuga I., Goia D.V. Core-shell gold/silver nanoparticles: Synthesis and optical properties. J. Colloid Interface Sci. 2013;392:90–95. doi: 10.1016/j.jcis.2012.09.057. PubMed DOI
Imura Y., Mori T., Morita-Imura C., Kataoka H., Akiyama R., Kurata H., Kawai T. Preparation and length control of water-dispersible ultrathin gold and silver bimetallic nanowires. Colloids Surfaces A Physicochem. Eng. Asp. 2018;543:9–14. doi: 10.1016/j.colsurfa.2018.01.047. DOI
Langer J., de Aberasturi D.J., Aizpurua J., Alvarez-Puebla R.A., Auguié B., Baumberg J.J., Bazan G.C., Bell S.E.J., Boisen A., Brolo A.G., et al. Present and future of surface-enhanced Raman scattering. ACS Nano. 2020;14:28–117. doi: 10.1021/acsnano.9b04224. PubMed DOI PMC
Wang R., Yao Y., Shen M., Wang X. Green synthesis of AuAtAg nanostructures through a seed-mediated method and their application in SERS. Colloids Surfaces A Physicochem. Eng. Asp. 2016;492:263–272. doi: 10.1016/j.colsurfa.2015.11.076. DOI
Cotton T.M., Schultz S.G., van Duyne R.P. Surface-Enhanced Resonance Raman Scattering from Cytochrome c and Myoglobin Adsorbed on a Silver Electrode. J. Am. Chem. Soc. 1980;102:7960–7962. doi: 10.1021/ja00547a036. DOI
Šmejkal P., Vlčková B., Procházka M., Mojzeš P., Pfleger J. SERRS spectra of cationic free-base porphyrin species adsorbed on laser ablated Ag colloids modified by mercaptoacetate spacers. J. Mol. Struct. 1999;482–483:225–229. doi: 10.1016/S0022-2860(98)00646-2. DOI
Šišková K., Bečička O., Mašek V., Šafářová K., Zbořil R. Spacer-free SERRS spectra of unperturbed porphyrin detected at 100 fM concentration in Ag hydrosols prepared by modified Tollens method. J. Raman Spectrosc. 2012;43:689–691. doi: 10.1002/jrs.3098. DOI
Siskova K., Vlckova B., Turpin P.Y., Thorel A., Grosjean A. Porphyrins as SERRS spectral probes of chemically functionalized Ag nanoparticles. Vib. Spectrosc. 2008;48:44–52. doi: 10.1016/j.vibspec.2008.04.006. DOI
Vlčková B., Šmejkal P., Michl M., Procházka M., Mojzeš P., Lednický F., Pfleger J. Surface-enhanced resonance Raman spectroscopy of porphyrin and metalloporphyrin species in systems with Ag nanoparticles and their assemblies. J. Inorg. Biochem. 2000;79:295–300. doi: 10.1016/S0162-0134(99)00172-5. PubMed DOI
Procházka M., Turpin P.Y., Štěpánek J., Vlčková B. SERRS of free base porphyrin in laser-ablated colloids: Evidence for three different spectral porphyrin forms. J. Raman Spectrosc. 2002;33:758–760. doi: 10.1002/jrs.910. DOI
Šišková K., Vlćková B., Turpin P.Y., Thorel A., Procházka M. Laser ablation of silver in aqueous solutions of organic species: Probing Ag nanoparticle-Adsorbate systems evolution by surface-enhanced raman and surface plasmon extinction spectra. J. Phys. Chem. C. 2011;115:5404–5412. doi: 10.1021/jp110907d. DOI
Šmejkal P., Šišková K., Vlčková B., Pfleger J., Šloufová I., Šlouf M., Mojzeš P. Characterization and surface-enhanced Raman spectral probing of silver hydrosols prepared by two-wavelength laser ablation and fragmentation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2003;59:2321–2329. doi: 10.1016/S1386-1425(03)00075-1. PubMed DOI
Jia G., Feng Z., Wei C., Li C. Multifunctional human serum albumin in the surface-enhanced Ramanspectroscopy of porphyrin: Demetalation promoter, molecular spacer andstabilizer. J. Raman Spectrosc. 2010;41:1615–1620. doi: 10.1002/jrs.2611. DOI
Vlčková B., Matějka P., Šimonová J., Čermáková K., Pančoška P., Baumruk V. Surface-enhanced resonance Raman spectra of free base 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin and its silver complex in systems with silver colloid: Direct adsorption in comparison to adsorption via molecular spacer. J. Phys. Chem. 1993;97:9719–9729. doi: 10.1021/j100140a031. DOI
Song C., Abell J.L.O., He Y., Murph S.H., Cui Y., Zhao Y. Gold-modified silver nanorod arrays: Growth dynamics and improved SERS properties. J. Mater. Chem. 2012;22:1150–1159. doi: 10.1039/C1JM14133C. DOI
van Hyning D.L., Zukoski C.F. Formation mechanisms and aggregation behavior of borohydride reduced silver particles. Langmuir. 1998;14:7034–7046. doi: 10.1021/la980325h. DOI
Polte J., Tuaev X., Wuithschick M., Fischer A., Thuenemann A.F., Rademann K., Kraehnert R., Emmerling F. Formation mechanism of colloidal silver nanoparticles: Analogies and differences to the growth of gold nanoparticles. ACS Nano. 2012;6:5791–5802. doi: 10.1021/nn301724z. PubMed DOI
Polte J., Erler R., Thünemann A.F., Sokolov S., Ahner T.T., Rademann K., Emmerling F., Kraehnert R. Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution. ACS Nano. 2010;4:1076–1082. doi: 10.1021/nn901499c. PubMed DOI
Gardiner J.A., Collat J.W. Kinetics of the Stepwise Hydrolysis of Tetrahydroborate Ion. J. Am. Chem. Soc. 1965;87:1692–1700. doi: 10.1021/ja01086a013. DOI
Gardiner J.A., Collat J.W. The Hydrolysis of Sodium Tetrahydroborate. Identification of an Intermediate. J. Am. Chem. Soc. 1964;86:3165–3166. doi: 10.1021/ja01069a048. DOI
Andrieux J., Demirci U.B., Hannauer J., Gervais C., Goutaudier C., Miele P. Spontaneous hydrolysis of sodium borohydride in harsh conditions. Int. J. Hydrogen Energy. 2011;36:224–233. doi: 10.1016/j.ijhydene.2010.10.055. DOI
Dong X., Ji X., Wu H., Zhao L., Li J., Yang W. Shape control of silver nanoparticles by stepwise citrate reduction. J. Phys. Chem. C. 2009;113:6573–6576. doi: 10.1021/jp900775b. DOI
Polte J. Fundamental growth principles of colloidal metal nanoparticles - a new perspective. Cryst. Eng. Comm. 2015;17:6809–6830. doi: 10.1039/C5CE01014D. DOI
Wuithschick M., Witte S., Kettemann F., Rademann K., Polte J. Illustrating the formation of metal nanoparticles with a growth concept based on colloidal stability. Phys. Chem. Chem. Phys. 2015;17:19895–19900. doi: 10.1039/C5CP02219C. PubMed DOI
Šišková K.M., Machala L., Tuček J., Kašlík J., Mojzeš P., Zbořil R. Mixtures of L-amino acids as reaction medium for formation of iron nanoparticles: The order of addition into a ferrous salt solution matters. Int. J. Mol. Sci. 2013;14:19452–19473. doi: 10.3390/ijms141019452. PubMed DOI PMC
Lee P.C., Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 1982;86:3391–3395. doi: 10.1021/j100214a025. DOI
Ko F.H., Tai M.R., Liu F.K., Chang Y.C. Au-Ag core-shell nanoparticles with controllable shell thicknesses for the detection of adenosine by surface enhanced Raman scattering. Sensors Actuators B Chem. 2015;211:283–289. doi: 10.1016/j.snb.2015.01.047. DOI
McGilvray K.L., Fasciani C., Bueno-Alejo C.J., Schwartz-Narbonne R., Scaiano J.C. Photochemical strategies for the seed-mediated growth of gold and gold-silver nanoparticles. Langmuir. 2012;28:16148–16155. doi: 10.1021/la302814v. PubMed DOI
Lakowicz J.R. Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission. Anal. Biochem. 2005;337:171–194. doi: 10.1016/j.ab.2004.11.026. PubMed DOI PMC
Reguera J., Langer J., de Aberasturi D.J., Liz-Marzán L.M. Anisotropic metal nanoparticles for surface enhanced Raman scattering. Chem. Soc. Rev. 2017;46:3866–3885. doi: 10.1039/C7CS00158D. PubMed DOI
González-Rubio G., Scarabelli L., Guerrero-Martínez A., Liz-Marzán L.M. Surfactant-Assisted Symmetry Breaking in Colloidal Gold Nanocrystal Growth. Chem. Nano. Mat. 2020;6:698–707. doi: 10.1002/cnma.201900754. DOI
Lohse S.E., Burrows N.D., Scarabelli L., Liz-Marzán L.M., Murphy C.J. Anisotropic noble metal nanocrystal growth: The role of halides. Chem. Mater. 2014;26:34–43. doi: 10.1021/cm402384j. DOI
Langille M.R., Personick M.L., Zhang J., Mirkin C.A. Defining rules for the shape evolution of gold nanoparticles. J. Am. Chem. Soc. 2012;134:14542–14554. doi: 10.1021/ja305245g. PubMed DOI
Nermin Y. In: Vitamin C—An Update on Current Uses and Functions. LeBlanc J.G., editor. InTech Open; London, UK: 2018. Chapter in Book. DOI
Munro C.H., Smith W.E., Garner M., Clarkson J., White P.C. Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance Raman scattering. Langmuir. 1995;11:3715–3720. doi: 10.1021/la00010a021. DOI