Flax-Derived Carbon: A Highly Durable Electrode Material for Electrochemical Double-Layer Supercapacitors
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000754
Ministry of Education, Youth and Science
IGA_PrF_2021_031
Internal Student Grant Agency of the Palacký University in Olomouc, Czech Republic
SP2020/136
Research of air pollution using unmanned aircraft, research of biomonitoring as a means of determining the air pollution load by selected elements and research of special methods of waste recovery
LM2018124
Ministry of Education, Youth and Science
PubMed
34578545
PubMed Central
PMC8466636
DOI
10.3390/nano11092229
PII: nano11092229
Knihovny.cz E-zdroje
- Klíčová slova
- EDLC, activated carbon, flax, supercapacitor,
- Publikační typ
- časopisecké články MeSH
Owing to their low cost, good performance, and high lifetime stability, activated carbons (ACs) with a large surface area rank among the most popular materials deployed in commercially available electrochemical double-layer (EDLC) capacitors. Here, we report a simple two-step synthetic procedure for the preparation of activated carbon from natural flax. Such ACs possess a very high specific surface area (1649 m2 g-1) accompanied by a microporous structure with the size of pores below 2 nm. These features are behind the extraordinary electrochemical performance of flax-derived ACs in terms of their high values of specific capacitance (500 F g-1 at a current density of 0.25 A g-1 in the three-electrode setup and 189 F g-1 at a current density of 0.5 A g-1 in two-electrode setup.), high-rate stability, and outstanding lifetime capability (85% retention after 150,000 charging/discharging cycles recorded at the high current density of 5 A g-1). These findings demonstrate that flax-based ACs have more than competitive potential compared to standard and commercially available activated carbons.
Zobrazit více v PubMed
Faraji S., Ani F.N. The Development Supercapacitor from Activated Carbon by Electroless Plating—A Review. Renew. Sustain. Energy Rev. 2015;42:823–834. doi: 10.1016/j.rser.2014.10.068. DOI
Zhang Y., Feng H., Wu X., Wang L., Zhang A., Xia T., Dong H., Li X., Zhang L. Progress of Electrochemical Capacitor Electrode Materials: A Review. Int. J. Hydrogen Energy. 2009;34:4889–4899. doi: 10.1016/j.ijhydene.2009.04.005. DOI
Frackowiak E., Béguin F. Carbon Materials for the Electrochemical Storage of Energy in Capacitors. Carbon. 2001;39:937–950. doi: 10.1016/S0008-6223(00)00183-4. DOI
Zhang L.L., Zhao X.S. Carbon-Based Materials as Supercapacitor Electrodes. Chem. Soc. Rev. 2009;38:2520. doi: 10.1039/b813846j. PubMed DOI
Wang Y., Shi Z., Huang Y., Ma Y., Wang C., Chen M., Chen Y. Supercapacitor Devices Based on Graphene Materials. J. Phys. Chem. C. 2009;113:13103–13107. doi: 10.1021/jp902214f. DOI
Wang G., Wang H., Lu X., Ling Y., Yu M., Zhai T., Tong Y., Li Y. Solid-State Supercapacitor Based on Activated Carbon Cloths Exhibits Excellent Rate Capability. Adv. Mater. 2014;26:2676–2682. doi: 10.1002/adma.201304756. PubMed DOI
Deng W., Ji X., Chen Q., Banks C.E. Electrochemical Capacitors Utilising Transition Metal Oxides: An Update of Recent Developments. RSC Adv. 2011;1:1171. doi: 10.1039/c1ra00664a. DOI
Snook G.A., Kao P., Best A.S. Conducting-Polymer-Based Supercapacitor Devices and Electrodes. J. Power Sources. 2011;196:1–12. doi: 10.1016/j.jpowsour.2010.06.084. DOI
Salunkhe R.R., Kaneti Y.V., Yamauchi Y. Metal–Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects. ACS Nano. 2017;11:5293–5308. doi: 10.1021/acsnano.7b02796. PubMed DOI
Ling Z., Ren C.E., Zhao M.-Q., Yang J., Giammarco J.M., Qiu J., Barsoum M.W., Gogotsi Y. Flexible and Conductive MXene Films and Nanocomposites with High Capacitance. Proc. Natl. Acad. Sci. USA. 2014;111:16676–16681. doi: 10.1073/pnas.1414215111. PubMed DOI PMC
Staaf L.G.H., Lundgren P., Enoksson P. Present and Future Supercapacitor Carbon Electrode Materials for Improved Energy Storage Used in Intelligent Wireless Sensor Systems. Nano Energy. 2014;9:128–141. doi: 10.1016/j.nanoen.2014.06.028. DOI
Pandolfo A.G., Hollenkamp A.F. Carbon Properties and Their Role in Supercapacitors. J. Power Sources. 2006;157:11–27. doi: 10.1016/j.jpowsour.2006.02.065. DOI
Inagaki M., Konno H., Tanaike O. Carbon Materials for Electrochemical Capacitors. J. Power Sources. 2010;195:7880–7903. doi: 10.1016/j.jpowsour.2010.06.036. DOI
Kigozi M., Kali R., Bello A., Padya B., Kalu-Uka G.M., Wasswa J., Jain P.K., Onwualu P.A., Dzade N.Y. Modified Activation Process for Supercapacitor Electrode Materials from African Maize Cob. Materials. 2020;13:5412. doi: 10.3390/ma13235412. PubMed DOI PMC
Yang L., Feng Y., Cao M., Yao J. Two-Step Preparation of Hierarchical Porous Carbon from KOH-Activated Wood Sawdust for Supercapacitor. Mater. Chem. Phys. 2019;238:121956. doi: 10.1016/j.matchemphys.2019.121956. DOI
Valente Nabais J.M., Teixeira J.G., Almeida I. Development of Easy Made Low Cost Bindless Monolithic Electrodes from Biomass with Controlled Properties to Be Used as Electrochemical Capacitors. Bioresour. Technol. 2011;102:2781–2787. doi: 10.1016/j.biortech.2010.11.083. PubMed DOI
Wang A., Sun K., Xu R., Sun Y., Jiang J. Cleanly Synthesizing Rotten Potato-Based Activated Carbon for Supercapacitor by Self-Catalytic Activation. J. Clean. Prod. 2021;283:125385. doi: 10.1016/j.jclepro.2020.125385. DOI
Kim H.R., Lee J.H., Lee S.K., Chun Y., Park C., Jin J.-H., Lee H.U., Kim S.W. Fabricating a Modified Biochar-Based All-Solid-State Flexible Microsupercapacitor Using Pen Lithography. J. Clean. Prod. 2021;284:125449. doi: 10.1016/j.jclepro.2020.125449. DOI
Guardia L., Suárez L., Querejeta N., Pevida C., Centeno T.A. Winery Wastes as Precursors of Sustainable Porous Carbons for Environmental Applications. J. Clean. Prod. 2018;193:614–624. doi: 10.1016/j.jclepro.2018.05.085. DOI
Li X., Xing W., Zhuo S., Zhou J., Li F., Qiao S.-Z., Lu G.-Q. Preparation of Capacitor’s Electrode from Sunflower Seed Shell. Bioresour. Technol. 2011;102:1118–1123. doi: 10.1016/j.biortech.2010.08.110. PubMed DOI
Elmouwahidi A., Zapata-Benabithe Z., Carrasco-Marín F., Moreno-Castilla C. Activated Carbons from KOH-Activation of Argan (Argania Spinosa) Seed Shells as Supercapacitor Electrodes. Bioresour. Technol. 2012;111:185–190. doi: 10.1016/j.biortech.2012.02.010. PubMed DOI
Tian W., Gao Q., Tan Y., Yang K., Zhu L., Yang C., Zhang H. Bio-Inspired Beehive-like Hierarchical Nanoporous Carbon Derived from Bamboo-Based Industrial by-Product as a High Performance Supercapacitor Electrode Material. J. Mater. Chem. A. 2015;3:5656–5664. doi: 10.1039/C4TA06620K. DOI
Mi J., Wang X.-R., Fan R.-J., Qu W.-H., Li W.-C. Coconut-Shell-Based Porous Carbons with a Tunable Micro/Mesopore Ratio for High-Performance Supercapacitors. Energy Fuels. 2012;26:5321–5329. doi: 10.1021/ef3009234. DOI
Hou J., Cao C., Ma X., Idrees F., Xu B., Hao X., Lin W. From Rice Bran to High Energy Density Supercapacitors: A New Route to Control Porous Structure of 3D Carbon. Sci. Rep. 2015;4:7260. doi: 10.1038/srep07260. PubMed DOI PMC
Maity S., Gon D.P., Paul P. A Review of Flax Nonwovens: Manufacturing, Properties, and Applications. J. Nat. Fibers. 2014;11:365–390. doi: 10.1080/15440478.2013.861781. DOI
Michel S.A.A.X., Vogels R.R.M., Bouvy N.D., Knetsch M.L.W., van den Akker N.M.S., Gijbels M.J.J., van der Marel C., Vermeersch J., Molin D.G.M., Koole L.H. Utilization of Flax Fibers for Biomedical Applications: Flax Fibers for Biomedical Applications. J. Biomed. Mater. Res. 2014;102:477–487. doi: 10.1002/jbm.b.33025. PubMed DOI
He D., Wu L., Yao Y., Zhang J., Huang Z.-H., Wang M.-X. A Facile Route to High Nitrogen-Containing Porous Carbon Fiber Sheets from Biomass-Flax for High-Performance Flexible Supercapacitors. Appl. Surf. Sci. 2020;507:145108. doi: 10.1016/j.apsusc.2019.145108. DOI
He S., Chen W. Application of Biomass-Derived Flexible Carbon Cloth Coated with MnO2 Nanosheets in Supercapacitors. J. Power Sources. 2015;294:150–158. doi: 10.1016/j.jpowsour.2015.06.051. DOI
Xiao P.-W., Meng Q., Zhao L., Li J.-J., Wei Z., Han B.-H. Biomass-Derived Flexible Porous Carbon Materials and Their Applications in Supercapacitor and Gas Adsorption. Mater. Des. 2017;129:164–172. doi: 10.1016/j.matdes.2017.05.035. DOI
Zhang Y., Mao T., Wu H., Cheng L., Zheng L. Carbon Nanotubes Grown on Flax Fabric as Hierarchical All-Carbon Flexible Electrodes for Supercapacitors. Adv. Mater. Interfaces. 2017;4:1601123. doi: 10.1002/admi.201601123. DOI
Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report) Pure Appl. Chem. 2015;87:1051–1069. doi: 10.1515/pac-2014-1117. DOI
Stoller M.D., Ruoff R.S. Best Practice Methods for Determining an Electrode Material’s Performance for Ultracapacitors. Energy Environ. Sci. 2010;3:1294. doi: 10.1039/c0ee00074d. DOI
Noori A., El-Kady M.F., Rahmanifar M.S., Kaner R.B., Mousavi M.F. Towards Establishing Standard Performance Metrics for Batteries, Supercapacitors and Beyond. Chem. Soc. Rev. 2019;48:1272–1341. doi: 10.1039/C8CS00581H. PubMed DOI
Bakandritsos A., Jakubec P., Pykal M., Otyepka M. Covalently Functionalized Graphene as a Supercapacitor Electrode Material. FlatChem. 2019;13:25–33. doi: 10.1016/j.flatc.2018.12.004. DOI
Zhang Y., Wang C., Jiang H., Wang Q., Zheng J., Meng C. Cobalt-Nickel Silicate Hydroxide on Amorphous Carbon Derived from Bamboo Leaves for Hybrid Supercapacitors. Chem. Eng. J. 2019;375:121938. doi: 10.1016/j.cej.2019.121938. DOI
Zielinski W., Kamedulski P., Smolarkiewicz-Wyczachowski A., Skorupska M., Lukaszewicz J.P., Ilnicka A. Synthesis of Hybrid Carbon Materials Consisting of N-Doped Microporous Carbon and Amorphous Carbon Nanotubes. Materials. 2020;13:2997. doi: 10.3390/ma13132997. PubMed DOI PMC
Chen J., Xu X., Li T., Pandiselvi K., Wang J. Toward High Performance 2D/2D Hybrid Photocatalyst by Electrostatic Assembly of Rationally Modified Carbon Nitride on Reduced Graphene Oxide. Sci. Rep. 2016;6:37318. doi: 10.1038/srep37318. PubMed DOI PMC
Zhi M., Xiang C., Li J., Li M., Wu N. Nanostructured Carbon–Metal Oxide Composite Electrodes for Supercapacitors: A Review. Nanoscale. 2013;5:72–88. doi: 10.1039/C2NR32040A. PubMed DOI
Wang H., Xu Z., Kohandehghan A., Li Z., Cui K., Tan X., Stephenson T.J., King’ondu C.K., Holt C.M.B., Olsen B.C., et al. Interconnected Carbon Nanosheets Derived from Hemp for Ultrafast Supercapacitors with High Energy. ACS Nano. 2013;7:5131–5141. doi: 10.1021/nn400731g. PubMed DOI
Huang W., Zhang H., Huang Y., Wang W., Wei S. Hierarchical Porous Carbon Obtained from Animal Bone and Evaluation in Electric Double-Layer Capacitors. Carbon. 2011;49:838–843. doi: 10.1016/j.carbon.2010.10.025. DOI
Ganfoud N., Sene A., Haefele M., Marin-Laflèche A., Daffos B., Taberna P.-L., Salanne M., Simon P., Rotenberg B. Effect of the Carbon Microporous Structure on the Capacitance of Aqueous Supercapacitors. Energy Storage Mater. 2019;21:190–195. doi: 10.1016/j.ensm.2019.05.047. DOI
Sayed D.M., El-Deab M.S., Elshakre M.E., Allam N.K. Nanocrystalline Cellulose Confined in Amorphous Carbon Fibers as Capacitor Material for Efficient Energy Storage. J. Phys. Chem. C. 2020;124:7007–7015. doi: 10.1021/acs.jpcc.9b12045. DOI
Eftekhari A. On the Mechanism of Microporous Carbon Supercapacitors. Mater. Today Chem. 2018;7:1–4. doi: 10.1016/j.mtchem.2017.11.004. DOI
Angelova V., Ivanova R., Delibaltova V., Ivanov K. Bio-Accumulation and Distribution of Heavy Metals in Fibre Crops (Flax, Cotton and Hemp) Ind. Crop. Prod. 2004;19:197–205. doi: 10.1016/j.indcrop.2003.10.001. DOI
Saleem M.H., Ali S., Hussain S., Kamran M., Chattha M.S., Ahmad S., Aqeel M., Rizwan M., Aljarba N.H., Alkahtani S., et al. Flax (Linum usitatissimum L.): A Potential Candidate for Phytoremediation? Biological and Economical Points of View. Plants. 2020;9:496. doi: 10.3390/plants9040496. PubMed DOI PMC
Zheng J., Tan G., Shan P., Liu T., Hu J., Feng Y., Yang L., Zhang M., Chen Z., Lin Y., et al. Understanding Thermodynamic and Kinetic Contributions in Expanding the Stability Window of Aqueous Electrolytes. Chem. 2018;4:2872–2882. doi: 10.1016/j.chempr.2018.09.004. DOI
Montes-Morán M.A., Suárez D., Menéndez J.A., Fuente E. On the Nature of Basic Sites on Carbon Surfaces: An Overview. Carbon. 2004;42:1219–1225. doi: 10.1016/j.carbon.2004.01.023. DOI
Oh Y.J., Yoo J.J., Kim Y.I., Yoon J.K., Yoon H.N., Kim J.-H., Park S.B. Oxygen Functional Groups and Electrochemical Capacitive Behavior of Incompletely Reduced Graphene Oxides as a Thin-Film Electrode of Supercapacitor. Electrochim. Acta. 2014;116:118–128. doi: 10.1016/j.electacta.2013.11.040. DOI
Li L., Li F. The Effect of Carbonyl, Carboxyl and Hydroxyl Groups on the Capacitance of Carbon Nanotubes. New Carbon Mater. 2011;26:224–228. doi: 10.1016/S1872-5805(11)60078-4. DOI
Wang G., Zhang L., Zhang J. A Review of Electrode Materials for Electrochemical Supercapacitors. Chem. Soc. Rev. 2012;41:797–828. doi: 10.1039/C1CS15060J. PubMed DOI
Liu T., Li Y. Addressing the Achilles’ Heel of Pseudocapacitive Materials: Long-term Stability. InfoMat. 2020;2:807–842. doi: 10.1002/inf2.12105. DOI
Boonpakdee D., Guajardo Yévenes C.F., Surareungchai W., La-o-vorakiat C. Exploring Non-Linearities of Carbon-Based Microsupercapacitors from an Equivalent Circuit Perspective. J. Mater. Chem. A. 2018;6:7162–7167. doi: 10.1039/C8TA01995A. DOI
Lee JS M., Wu T.H., Alston B.M., Briggs M.E., Hasell T., Hu C.C., Cooper A.I. Porosity-Engineered Carbons for Supercapacitive Energy Storage Using Conjugated Microporous Polymer Precursors. J. Mater. Chem. A. 2016;4:7665–7673.
Zhong C., Deng Y., Hu W., Qiao J., Zhang L., Zhang J. A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors. Chem. Soc. Rev. 2015;44:7484–7539. doi: 10.1039/C5CS00303B. PubMed DOI
Pean C., Daffos B., Rotenberg B., Levitz P., Haefele M., Taberna P.-L., Simon P., Salanne M. Confinement, Desolvation, And Electrosorption Effects on the Diffusion of Ions in Nanoporous Carbon Electrodes. J. Am. Chem. Soc. 2015;137:12627–12632. doi: 10.1021/jacs.5b07416. PubMed DOI PMC
Portet C., Taberna P.L., Simon P., Laberty-Robert C. Modification of Al Current Collector Surface by Sol–Gel Deposit for Carbon–Carbon Supercapacitor Applications. Electrochim. Acta. 2004;49:905–912. doi: 10.1016/j.electacta.2003.09.043. DOI
Mathis T.S., Kurra N., Wang X., Pinto D., Simon P., Gogotsi Y. Energy Storage Data Reporting in Perspective—Guidelines for Interpreting the Performance of Electrochemical Energy Storage Systems. Adv. Energy Mater. 2019;9:1902007. doi: 10.1002/aenm.201902007. DOI
Cericola D., Spahr M.E. Impedance Spectroscopic Studies of the Porous Structure of Electrodes Containing Graphite Materials with Different Particle Size and Shape. Electrochim. Acta. 2016;191:558–566. doi: 10.1016/j.electacta.2016.01.121. DOI
Kötz R., Carlen M. Principles and Applications of Electrochemical Capacitors. Electrochim. Acta. 2000;45:2483–2498. doi: 10.1016/S0013-4686(00)00354-6. DOI
Eftekhari A. Surface Diffusion and Adsorption in Supercapacitors. ACS Sustain. Chem. Eng. 2019;7:3692–3701. doi: 10.1021/acssuschemeng.8b01075. DOI
Diard J.-P., Le Gorrec B., Montella C. Linear Diffusion Impedance. General Expression and Applications. J. Electroanal. Chem. 1999;471:126–131. doi: 10.1016/S0022-0728(99)00262-4. DOI
Dong Y., Zhu J., Li Q., Zhang S., Song H., Jia D. Carbon Materials for High Mass-Loading Supercapacitors: Filling the Gap between New Materials and Practical Applications. J. Mater. Chem. A. 2020;8:21930–21946. doi: 10.1039/D0TA08265A. DOI
Zhang S., Pan N. Supercapacitors Performance Evaluation. Adv. Energy Mater. 2015;5:1401401. doi: 10.1002/aenm.201401401. DOI
Rufford T.E., Hulicova-Jurcakova D., Khosla K., Zhu Z., Lu G.Q. Microstructure and Electrochemical Double-Layer Capacitance of Carbon Electrodes Prepared by Zinc Chloride Activation of Sugar Cane Bagasse. J. Power Sources. 2010;195:912–918. doi: 10.1016/j.jpowsour.2009.08.048. DOI
Wang X., Yun S., Fang W., Zhang C., Liang X., Lei Z., Liu Z. Layer-Stacking Activated Carbon Derived from Sunflower Stalk as Electrode Materials for High-Performance Supercapacitors. ACS Sustain. Chem. Eng. 2018;6:11397–11407. doi: 10.1021/acssuschemeng.8b01334. DOI
Wu M., Li L., Liu J., Li Y., Ai P., Wu W., Zheng J. Template-Free Preparation of Mesoporous Carbon from Rice Husks for Use in Supercapacitors. New Carbon Mater. 2015;30:471–475. doi: 10.1016/S1872-5805(15)60201-3. DOI
Divyashree A., Manaf SA B.A., Yallappa S., Chaitra K., Kathyayini N., Hegde G. Low Cost, High Performance Supercapacitor Electrode Using Coconut Wastes: Eco-Friendly Approach. J. Energy Chem. 2016;25:880–887. doi: 10.1016/j.jechem.2016.08.002. DOI
Editorial for the Special Issue on "Graphene-Related Materials: Synthesis and Applications"