Nanostructures for Achieving Selective Properties of a Thermophotovoltaic Emitter
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO:68081731
Akademie Věd České Republiky
MEYS CR (LM2018110)
CzechNanoLab Research Infrastructure
PubMed
34578758
PubMed Central
PMC8470446
DOI
10.3390/nano11092443
PII: nano11092443
Knihovny.cz E-zdroje
- Klíčová slova
- electron beam lithography, emissivity, nanostructures, reactive ion etching, selective emitters, thermophotovoltaics,
- Publikační typ
- časopisecké články MeSH
This paper focuses on the research and development of a suitable method for creating a selective emitter for the visible and near-infrared region to be able to work optimally together with silicon photovoltaic cells in a thermophotovoltaic system. The aim was to develop a new method to create very fine structures beyond the conventional standard (nanostructures), which will increase the emissivity of the base material for it to match the needs of a selective emitter for the VIS and NIR region. Available methods were used to create the nanostructures, from which we eliminated all unsuitable methods; for the selected method, we established the optimal procedure and parameters for their creation. The development of the emitter nanostructures included the necessary substrate pretreatments, where great emphasis was placed on material purity and surface roughness. Tungsten was purposely chosen as the main material for the formation of the nanostructures; we verified the effect of the formed structure on the resulting emissivity. This work presents a new method for the formation of nanostructures, which are not commonly formed in such fineness; by this, it opens the way to new possibilities for achieving the desired selectivity of the thermophotovoltaic emitter.
Zobrazit více v PubMed
Coutts T.J. Overview of thermophotovoltaic generation of electricity. Sol. Energy Mater. Sol. Cells. 2001;66:443–452. doi: 10.1016/S0927-0248(00)00206-3. DOI
Cheetham K.J., Carrington P.J., Cook N.B., Krier A. Low bandgap GaInAsSbP pentanary thermophotovoltaic diodes. Sol. Energy Mater. Sol. Cells. 2011;95:534–537. doi: 10.1016/j.solmat.2010.08.036. DOI
DePoy D.M., Fourspring P.M., Baldasaro P.F., Beausang J., Brown E., Dashiel M., Rahner K., Rahmlow T.D., Lazo-Wasem J.E., Gratrix E., et al. Proceedings of the Information Bridge: DOE Scientific and Technical Information. AIP Publishing; College Park, MD, USA: 2004. Thermophotovoltaic Spectral Control.
Chubb D. Fundamentals of Thermophotovoltaic Energy Conversion. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2007.
Bauer T., Forbes I., Penlington R., Pearsall N. Heat transfer modelling in thermophotovoltaic cavities using glass media. Sol. Energy Mater. Sol. Cells. 2005;88:257–268. doi: 10.1016/j.solmat.2004.10.008. DOI
Green M. Third Generation Photovoltaics: Advanced Solar Energy Conversion. 1st ed. Springer; Berlin/Heidelberg, Germany: 2003.
Bhatt R., Kravchenko I., Gupta M. High-efficiency solar thermophotovoltaic system using a nanostructure-based selective emitter. Sol. Energy. 2020;197:538–545. doi: 10.1016/j.solener.2020.01.029. DOI
Ni Q., McBurney R., Alshehri H., Wang L. Theoretical analysis of solar thermophotovoltaic energy conversion with selective metafilm and cavity reflector. Sol. Energy. 2019;191:623–628. doi: 10.1016/j.solener.2019.09.033. DOI
Binidra K., Miloua R., Khadraoui M., Kebbab Z., Bouzidi A., Benramdane N. Spectral control in thermophotovoltaic systems by optimized one-dimensional photonic crystals. Optik. 2018;156:879–885. doi: 10.1016/j.ijleo.2017.12.070. DOI
Ogbonnaya C., Turan A., Abeykoon C. Numerical integration of solar, electrical and thermal exergies of photovoltaic module: A novel thermophotovoltaic model. Sol. Energy. 2019;185:298–306. doi: 10.1016/j.solener.2019.04.058. DOI
Chen M., Yan H., Zhou P., Chen X. Performance analysis of solar thermophotovoltaic system with selective absorber/emitter. J. Quant. Spectrosc. Radiat. Transf. 2020;253:107. doi: 10.1016/j.jqsrt.2020.107163. DOI
Silva-Oelker G., Jerez-Hanckes C., Fay P. High-temperature tungsten-hafnia optimized selective thermal emitters for thermophotovoltaic applications. J. Quant. Spectrosc. Radiat. Transf. 2019;231:61–68. doi: 10.1016/j.jqsrt.2019.04.008. DOI
Aspelmeyer M. Cavity Optomechanics. Springer; Berlin/Heidelberg, Germany: 2016.
Šimonová L., Kolář J., Vyroubal P. The Analysis of the Effect of Heat on Photovoltaic Cells in Thermophotovoltaic System. ECS Trans. 2014;63:191–197. doi: 10.1149/06301.0191ecst. DOI
Šimonová L. Ph.D. Thesis. University of Technology; Brno, Czech Republic: 2021. Selektivní Emitor pro Termofotovoltaické Systémy [Selective Emitter for Thermophotovoltaic Systems]
Matějka M., Krátký S., Riháček T., Knápek A., Kolařík V. Functional nano-structuring of thin silicon nitride membranes. J. Electr. Eng. 2020;71:127–130. doi: 10.2478/jee-2020-0019. DOI
Králík T., Musilová V., Hanzelka P., Frolec J. Method for measurement of emissivity and absorptivity of highly reflective surfaces from 20 K to room temperatures. Metrologia. 2016;53:743–753. doi: 10.1088/0026-1394/53/2/743. DOI
Frolec J., Králík T., Musilová V., Hanzelka P., Srnka A., Jelínek J. A database of metallic materials emissivities and absorptivities for cryogenics. Cryogenics. 2019;97:85–99. doi: 10.1016/j.cryogenics.2018.12.003. DOI