FlowCT for the analysis of large immunophenotypic data sets and biomarker discovery in cancer immunology
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34587246
PubMed Central
PMC8791585
DOI
10.1182/bloodadvances.2021005198
PII: 477072
Knihovny.cz E-resources
- MeSH
- Biomarkers MeSH
- Smoldering Multiple Myeloma * MeSH
- Immunophenotyping MeSH
- Bone Marrow MeSH
- Humans MeSH
- Flow Cytometry methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biomarkers MeSH
Large-scale immune monitoring is becoming routinely used in clinical trials to identify determinants of treatment responsiveness, particularly to immunotherapies. Flow cytometry remains one of the most versatile and high throughput approaches for single-cell analysis; however, manual interpretation of multidimensional data poses a challenge when attempting to capture full cellular diversity and provide reproducible results. We present FlowCT, a semi-automated workspace empowered to analyze large data sets. It includes pre-processing, normalization, multiple dimensionality reduction techniques, automated clustering, and predictive modeling tools. As a proof of concept, we used FlowCT to compare the T-cell compartment in bone marrow (BM) with peripheral blood (PB) from patients with smoldering multiple myeloma (SMM), identify minimally invasive immune biomarkers of progression from smoldering to active MM, define prognostic T-cell subsets in the BM of patients with active MM after treatment intensification, and assess the longitudinal effect of maintenance therapy in BM T cells. A total of 354 samples were analyzed and immune signatures predictive of malignant transformation were identified in 150 patients with SMM (hazard ratio [HR], 1.7; P < .001). We also determined progression-free survival (HR, 4.09; P < .0001) and overall survival (HR, 3.12; P = .047) in 100 patients with active MM. New data also emerged about stem cell memory T cells, the concordance between immune profiles in BM and PB, and the immunomodulatory effect of maintenance therapy. FlowCT is a new open-source computational approach that can be readily implemented by research laboratories to perform quality control, analyze high-dimensional data, unveil cellular diversity, and objectively identify biomarkers in large immune monitoring studies. These trials were registered at www.clinicaltrials.gov as #NCT01916252 and #NCT02406144.
Centre de Recherche en Cancérologie de Toulouse Unité 1037 INSERM Toulouse France; and
Clinical and Experimental Medicine Department Magna Graecia University Catanzaro Italy
Department of Haemato oncology University Hospital Ostrava Ostrava Czech Republic
Hematology Unit Department of Oncology Annunziata Hospital of Cosenza Cosenza Italy
Hospital Clínic Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain
Hospital Universitario 12 de Octubre Madrid Spain
Medical Oncology Unit Great Metropolitan Hospital Riuniti of Reggio Calabria Reggio Calabria Italy
Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University Baltimore MD
See more in PubMed
Velasquez MP, Bonifant CL, Gottschalk S. Redirecting T cells to hematological malignancies with bispecific antibodies. Blood. 2018;131(1):30-38. PubMed PMC
Wang Y, Nowakowski GS, Wang ML, Ansell SM. Advances in CD30- and PD-1-targeted therapies for classical Hodgkin lymphoma. J Hematol Oncol. 2018;11(1):57. PubMed PMC
Botta C, Misso G, Martino EC, et al. . The route to solve the interplay between inflammation, angiogenesis and anti-cancer immune response. Cell Death Dis. 2016;7(7):e2299. PubMed PMC
Sharma P, Allison JP. Dissecting the mechanisms of immune checkpoint therapy. Nat Rev Immunol. 2020;20(2):75-76. PubMed
Galluzzi L, Vacchelli E, Bravo-San Pedro JM, et al. . Classification of current anticancer immunotherapies. Oncotarget. 2014;5(24):12472-12508. PubMed PMC
Botta C, Di Martino MT, Ciliberto D, et al. . A gene expression inflammatory signature specifically predicts multiple myeloma evolution and patients survival. Blood Cancer J. 2016;6(12):e511. PubMed PMC
Brück O, Blom S, Dufva O, et al. . Immune cell contexture in the bone marrow tumor microenvironment impacts therapy response in CML. Leukemia. 2018;32(7):1643-1656. PubMed
Dufva O, Pölönen P, Brück O, et al. . Immunogenomic landscape of hematological malignancies. Cancer Cell. 2020;38(3):380-399.e13. PubMed
Paiva B, Mateos MV, Sanchez-Abarca LI, et al. ; Spanish Myeloma Group/Program Study and Treatment of Hematological Malignancies cooperative study groups . Immune status of high-risk smoldering multiple myeloma patients and its therapeutic modulation under LenDex: a longitudinal analysis. Blood. 2016;127(9):1151-1162. PubMed
Perez C, Botta C, Zabaleta A, et al. . Immunogenomic identification and characterization of granulocytic myeloid-derived suppressor cells in multiple myeloma. Blood. 2020;136(2):199-209. PubMed
Radpour R, Riether C, Simillion C, Höpner S, Bruggmann R, Ochsenbein AF. CD8+ T cells expand stem and progenitor cells in favorable but not adverse risk acute myeloid leukemia. Leukemia. 2019;33(10):2379-2392. PubMed
Tobin JWD, Keane C, Gunawardana J, et al. . Progression of disease within 24 months in follicular lymphoma is associated with reduced intratumoral immune infiltration. J Clin Oncol. 2019;37(34):3300-3309. PubMed PMC
Witkowski MT, Dolgalev I, Evensen NA, et al. . Extensive remodeling of the immune microenvironment in B cell acute lymphoblastic leukemia. Cancer Cell. 2020;37(6):867-882.e12. PubMed PMC
Bedognetti D. A multi-layer molecular fresco of the immune diversity across hematologic malignancies. Cancer Cell. 2020;38(3):313-316. PubMed
Saeys Y, Van Gassen S, Lambrecht BN. Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat Rev Immunol. 2016;16(7):449-462. PubMed
Keyes TJ, Domizi P, Lo YC, Nolan GP, Davis KL. A cancer biologist’s primer on machine learning applications in high-dimensional cytometry. Cytometry A. 2020;97(8):782-799. PubMed PMC
Abe K, Minoura K, Maeda Y, Nishikawa H, Shimamura T. Model-based clustering for flow and mass cytometry data with clinical information. BMC Bioinformatics. 2020;21(suppl 13):393. PubMed PMC
Van Gassen S, Callebaut B, Van Helden MJ, et al. . FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A. 2015;87(7):636-645. PubMed
Nowicka M, Krieg C, Crowell HL, et al. . CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets. F1000 Res. 2017;6:748. PubMed PMC
Ferrer-Font L, Mayer JU, Old S, Hermans IF, Irish J, Price KM. High-dimensional data analysis algorithms yield comparable results for mass cytometry and spectral flow cytometry data. Cytometry A. 2020;97(8):824-831. PubMed PMC
Stassen SV, Siu DMD, Lee KCM, Ho JWK, So HKH, Tsia KK. PARC: ultrafast and accurate clustering of phenotypic data of millions of single cells. Bioinformatics. 2020;36(9):2778-2786. PubMed PMC
Kratochvíl M, Bednárek D, Sieger T, Fišer K, Vondrášek J. ShinySOM: graphical SOM-based analysis of single-cell cytometry data. Bioinformatics. 2020;36(10):3288-3289. PubMed PMC
Monaco G, Chen H, Poidinger M, Chen J, de Magalhães JP, Larbi A. flowAI: automatic and interactive anomaly discerning tools for flow cytometry data. Bioinformatics. 2016;32(16):2473-2480. PubMed
Finak G, Frelinger J, Jiang W, et al. . OpenCyto: an open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis. PLOS Comput Biol. 2014;10(8):e1003806. PubMed PMC
Ogishi M, Yang R, Gruber C, et al. . Multibatch cytometry data integration for optimal immunophenotyping. J Immunol. 2021;206(1):206-213. PubMed PMC
Van Gassen S, Gaudilliere B, Angst MS, Saeys Y, Aghaeepour N. CytoNorm: a normalization algorithm for cytometry data. Cytometry A. 2020;97(3):268-278. PubMed PMC
Opzoomer JW, Timms J, Blighe K, et al. . ImmunoCluster: a computational framework for the non-specialist to profile cellular heterogeneity in cytometry datasets. bioRxiv. 2020.
Ashhurst TM, Marsh-Wakefield F, Putri GH, et al. . Integration, exploration, and analysis of high-dimensional single-cell cytometry data using Spectre. bioRxiv. 2020. PubMed
Zavidij O, Haradhvala NJ, Mouhieddine TH, et al. . Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma. Nat Cancer. 2020;1(5):493-506. PubMed PMC
Botta C, Mendicino F, Martino EA, et al. . Mechanisms of immune evasion in multiple myeloma: Open questions and therapeutic opportunities. Cancers (Basel). 2021;13(13):3213. PubMed PMC
Dimopoulos M, Bringhen S, Anttila P, et al. . Isatuximab as monotherapy and combined with dexamethasone in patients with relapsed/refractory multiple myeloma. Blood. 2021;137(9):1154-1165. PubMed PMC
Paiva B, Puig N, Cedena MT, et al. ; GEM (Grupo Español de Mieloma)/PETHEMA (Programa Para el Estudio de la Terapéutica en Hemopatías Malignas) Cooperative Study Group . Measurable residual disease by next-generation flow cytometry in multiple myeloma. J Clin Oncol. 2020;38(8):784-792. PubMed
Rosiñol L, Oriol A, Rios R, et al. . Bortezomib, lenalidomide, and dexamethasone as induction therapy prior to autologous transplant in multiple myeloma. Blood. 2019;134(16):1337-1345. PubMed PMC
Kalina T, Flores-Montero J, van der Velden VH, et al. ; EuroFlow Consortium (EU-FP6, LSHB-CT-2006-018708) . EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 2012;26(9):1986-2010. PubMed PMC
Dobin A, Davis CA, Schlesinger F, et al. . STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21. PubMed PMC
Anders S, Pyl PT, Huber W. HTSeq – a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166-169. PubMed PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. PubMed PMC
Pantano L. DEGreport: Report of DEG analysis. R package version 1.13.8.
Dhodapkar MV. MGUS to myeloma: a mysterious gammopathy of underexplored significance. Blood. 2016;128(23):2599-2606. PubMed PMC
Pessoa de Magalhães RJ, Vidriales MB, Paiva B, et al. ; Grupo Castellano-Leones de Gammapatias Monoclonales, cooperative study groups . Analysis of the immune system of multiple myeloma patients achieving long-term disease control by multidimensional flow cytometry. Haematologica. 2013;98(1):79-86. PubMed PMC
Dhodapkar MV, Sexton R, Waheed S, et al. . Clinical, genomic, and imaging predictors of myeloma progression from asymptomatic monoclonal gammopathies (SWOG S0120). Blood. 2014;123(1):78-85. PubMed PMC
Spooner A, Chen E, Sowmya A, et al. . A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction. Sci Rep. 2020;10(1):20410. PubMed PMC
Palit S, Heuser C, de Almeida GP, Theis FJ, Zielinski CE. Meeting the challenges of high-dimensional single-cell data analysis in immunology. Front Immunol. 2019;10:1515. PubMed PMC
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411-420. PubMed PMC
Crichton DJ, Altinok A, Amos CI, et al. . Cancer biomarkers and big data: a planetary science approach. Cancer Cell. 2020;38(6):757-760. PubMed
Weber LM, Robinson MD. Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytometry A. 2016;89(12):1084-1096. PubMed
Kobak D, Berens P. The art of using t-SNE for single-cell transcriptomics. Nat Commun. 2019;10(1):5416. PubMed PMC
Manz CR, Parikh RB, Small DS, et al. . Effect of integrating machine learning mortality estimates with behavioral nudges to clinicians on serious illness conversations among patients with cancer: a stepped-wedge cluster randomized clinical trial. JAMA Oncol. 2020;6(12):e204759. PubMed PMC
Morris E, He K, Li Y, Li Y, Kang J. SurvBoost: an R package for high-dimensional variable selection in the stratified proportional hazards model via gradient boosting. arXiv preprint arXiv:180307715. 2018. PubMed PMC
Ehrlinger J. ggRandomForests: exploring random forest survival. arXiv preprint arXiv:161208974. 2016.
Rinaudo P, Boudah S, Junot C, Thévenot EA. biosigner: A new method for the discovery of significant molecular signatures from omics data. Front Mol Biosci. 2016;3:26. PubMed PMC
Minnie SA, Kuns RD, Gartlan KH, et al. . Myeloma escape after stem cell transplantation is a consequence of T-cell exhaustion and is prevented by TIGIT blockade. Blood. 2018;132(16):1675-1688. PubMed
Mateos MV, Kumar S, Dimopoulos MA, et al. . International Myeloma Working Group risk stratification model for smoldering multiple myeloma (SMM). Blood Cancer J. 2020;10(10):102. PubMed PMC
Good Z, Sarno J, Jager A, et al. . Single-cell developmental classification of B cell precursor acute lymphoblastic leukemia at diagnosis reveals predictors of relapse. Nat Med. 2018;24(4):474-483. PubMed PMC
ClinicalTrials.gov
NCT02406144, NCT01916252