PRM-LIVE with Trapped Ion Mobility Spectrometry and Its Application in Selectivity Profiling of Kinase Inhibitors
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
R01 CA233800
NCI NIH HHS - United States
R21 CA247671
NCI NIH HHS - United States
U24 DK116204
NIDDK NIH HHS - United States
PubMed
34606255
PubMed Central
PMC9297317
DOI
10.1021/acs.analchem.1c02349
Knihovny.cz E-resources
- MeSH
- Mass Spectrometry MeSH
- Ion Mobility Spectrometry * MeSH
- Humans MeSH
- Peptides MeSH
- Proteins MeSH
- Proteomics * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Peptides MeSH
- Proteins MeSH
Parallel reaction monitoring (PRM) has emerged as a popular approach for targeted protein quantification. With high ion utilization efficiency and first-in-class acquisition speed, the timsTOF Pro provides a powerful platform for PRM analysis. However, sporadic chromatographic drift in peptide retention time represents a fundamental limitation for the reproducible multiplexing of targets across PRM acquisitions. Here, we present PRM-LIVE, an extensible, Python-based acquisition engine for the timsTOF Pro, which dynamically adjusts detection windows for reproducible target scheduling. In this initial implementation, we used iRT peptides as retention time standards and demonstrated reproducible detection and quantification of 1857 tryptic peptides from the cell lysate in a 60 min PRM-LIVE acquisition. As an application in functional proteomics, we use PRM-LIVE in an activity-based protein profiling platform to assess binding selectivity of small-molecule inhibitors against 220 endogenous human kinases.
Bruker Daltonics GmbH and Co KG Bremen 28359 Germany
Bruker Daltonics Inc Billerica Massachusetts 01821 United States
See more in PubMed
Marx V, Targeted proteomics. Nat Methods 2013, 10 (1), 19–22. PubMed
Peterson AC; Russell JD; Bailey DJ; Westphall MS; Coon JJ, Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics 2012, 11 (11), 1475–88. PubMed PMC
Picotti P; Aebersold R, Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 2012, 9 (6), 555–66. PubMed
Sherman J; McKay MJ; Ashman K; Molloy MP, How specific is my SRM?: The issue of precursor and product ion redundancy. Proteomics 2009, 9 (5), 1120–3. PubMed
Duncan MW; Yergey AL; Patterson SD, Quantifying proteins by mass spectrometry: The selectivity of SRM is only part of the problem. Proteomics 2009, 9 (5), 1124–1127. PubMed PMC
Gillet LC; Navarro P; Tate S; Rost H; Selevsek N; Reiter L; Bonner R; Aebersold R, Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 2012, 11 (6), O111016717. PubMed PMC
Schilling B; MacLean B; Held JM; Sahu AK; Rardin MJ; Sorensen DJ; Peters T; Wolfe AJ; Hunter CL; MacCoss MJ; Gibson BW, Multiplexed, Scheduled, High-Resolution Parallel Reaction Monitoring on a Full Scan QqTOF Instrument with Integrated Data-Dependent and Targeted Mass Spectrometric Workflows. Anal Chem 2015, 87 (20), 10222–9. PubMed PMC
Meier F; Beck S; Grassl N; Lubeck M; Park MA; Raether O; Mann M, Parallel Accumulation-Serial Fragmentation (PASEF): Multiplying Sequencing Speed and Sensitivity by Synchronized Scans in a Trapped Ion Mobility Device. J Proteome Res 2015, 14 (12), 5378–87. PubMed
Meier F; Brunner AD; Koch S; Koch H; Lubeck M; Krause M; Goedecke N; Decker J; Kosinski T; Park MA; Bache N; Hoerning O; Cox J; Rather O; Mann M, Online Parallel Accumulation-Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Mol Cell Proteomics 2018, 17 (12), 2534–2545. PubMed PMC
Marto J. In Multidimension LC-MS/MS analysis of CSF samples in the biofind cohort for biomarker discovery in Parkinson’s disease, 18th Human Proteome Organization World Congress, Adelaide, Australia, Adelaide, Australia, 2019.
Lesur A; Schmit PO; Bernardin F; Letellier E; Brehmer S; Decker J; Dittmar G, Highly Multiplexed Targeted Proteomics Acquisition on a TIMS-QTOF. Anal Chem 2021, 93 (3), 1383–1392. PubMed
Bian Y; Zheng R; Bayer FP; Wong C; Chang YC; Meng C; Zolg DP; Reinecke M; Zecha J; Wiechmann S; Heinzlmeir S; Scherr J; Hemmer B; Baynham M; Gingras AC; Boychenko O; Kuster B, Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC-MS/MS. Nat Commun 2020, 11 (1), 157. PubMed PMC
Urisman A; Levin RS; Gordan JD; Webber JT; Hernandez H; Ishihama Y; Shokat KM; Burlingame AL, An Optimized Chromatographic Strategy for Multiplexing In Parallel Reaction Monitoring Mass Spectrometry: Insights from Quantitation of Activated Kinases. Mol Cell Proteomics 2017, 16 (2), 265–277. PubMed PMC
Gallien S; Kim SY; Domon B, Large-Scale Targeted Proteomics Using Internal Standard Triggered-Parallel Reaction Monitoring (IS-PRM). Mol Cell Proteomics 2015, 14 (6), 1630–44. PubMed PMC
Remes PM; Yip P; MacCoss MJ, Highly Multiplex Targeted Proteomics Enabled by Real-Time Chromatographic Alignment. Anal Chem 2020, 92 (17), 11809–11817. PubMed PMC
Ficarro SB; Zhang Y; Lu Y; Moghimi AR; Askenazi M; Hyatt E; Smith ED; Boyer L; Schlaeger TM; Luckey CJ; Marto JA, Improved electrospray ionization efficiency compensates for diminished chromatographic resolution and enables proteomics analysis of tyrosine signaling in embryonic stem cells. Anal Chem 2009, 81 (9), 3440–7. PubMed
Yu F; Haynes SE; Teo GC; Avtonomov DM; Polasky DA; Nesvizhskii AI, Fast Quantitative Analysis of timsTOF PASEF Data with MSFragger and IonQuant. Mol Cell Proteomics 2020, 19 (9), 1575–1585. PubMed PMC
Choi M; Chang CY; Clough T; Broudy D; Killeen T; MacLean B; Vitek O, MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 2014, 30 (17), 2524–6. PubMed
Nolte H; MacVicar TD; Tellkamp F; Kruger M, Instant Clue: A Software Suite for Interactive Data Visualization and Analysis. Sci Rep 2018, 8 (1), 12648. PubMed PMC
Duncan JS; Whittle MC; Nakamura K; Abell AN; Midland AA; Zawistowski JS; Johnson NL; Granger DA; Jordan NV; Darr DB; Usary J; Kuan PF; Smalley DM; Major B; He X; Hoadley KA; Zhou B; Sharpless NE; Perou CM; Kim WY; Gomez SM; Chen X; Jin J; Frye SV; Earp HS; Graves LM; Johnson GL, Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 2012, 149 (2), 307–21. PubMed PMC
Zhou F; Lu Y; Ficarro SB; Adelmant G; Jiang W; Luckey CJ; Marto JA, Genome-scale proteome quantification by DEEP SEQ mass spectrometry. Nat Commun 2013, 4, 2171. PubMed PMC
Spraggins JM; Djambazova KV; Rivera ES; Migas LG; Neumann EK; Fuetterer A; Suetering J; Goedecke N; Ly A; Van de Plas R; Caprioli RM, High-Performance Molecular Imaging with MALDI Trapped Ion-Mobility Time-of-Flight (timsTOF) Mass Spectrometry. Anal Chem 2019, 91 (22), 14552–14560. PubMed PMC
Alexander WM; Ficarro SB; Adelmant G; Marto JA, multiplierz v2.0: A Python-based ecosystem for shared access and analysis of native mass spectrometry data. Proteomics 2017, 17 (15–16). PubMed
Roskoski R Jr., Properties of FDA-approved small molecule protein kinase inhibitors: A 2020 update. Pharmacol Res 2020, 152, 104609. PubMed
Patricelli MP; Nomanbhoy TK; Wu J; Brown H; Zhou D; Zhang J; Jagannathan S; Aban A; Okerberg E; Herring C; Nordin B; Weissig H; Yang Q; Lee JD; Gray NS; Kozarich JW, In situ kinase profiling reveals functionally relevant properties of native kinases. Chem Biol 2011, 18 (6), 699–710. PubMed PMC
Hoffman MA; Fang B; Haura EB; Rix U; Koomen JM, Comparison of Quantitative Mass Spectrometry Platforms for Monitoring Kinase ATP Probe Uptake in Lung Cancer. J Proteome Res 2018, 17 (1), 63–75. PubMed PMC
Zhao Q; Ouyang X; Wan X; Gajiwala KS; Kath JC; Jones LH; Burlingame AL; Taunton J, Broad-Spectrum Kinase Profiling in Live Cells with Lysine-Targeted Sulfonyl Fluoride Probes. J Am Chem Soc 2017, 139 (2), 680–685. PubMed PMC
Huang T; Hosseinibarkooie S; Borne AL; Granade ME; Brulet JW; Harris TE; Ferris HA; Hsu K-L, Chemoproteomic profiling of kinases in live cells using electrophilic sulfonyl triazole probes. Chemical Science 2021, 12 (9), 3295–3307. PubMed PMC
Bantscheff M; Eberhard D; Abraham Y; Bastuck S; Boesche M; Hobson S; Mathieson T; Perrin J; Raida M; Rau C; Reader V; Sweetman G; Bauer A; Bouwmeester T; Hopf C; Kruse U; Neubauer G; Ramsden N; Rick J; Kuster B; Drewes G, Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 2007, 25 (9), 1035–44. PubMed
Browne CM; Jiang B; Ficarro SB; Doctor ZM; Johnson JL; Card JD; Sivakumaren SC; Alexander WM; Yaron TM; Murphy CJ; Kwiatkowski NP; Zhang T; Cantley LC; Gray NS; Marto JA, A Chemoproteomic Strategy for Direct and Proteome-Wide Covalent Inhibitor Target-Site Identification. J Am Chem Soc 2019, 141 (1), 191–203. PubMed PMC
Lombardo LJ; Lee FY; Chen P; Norris D; Barrish JC; Behnia K; Castaneda S; Cornelius LA; Das J; Doweyko AM; Fairchild C; Hunt JT; Inigo I; Johnston K; Kamath A; Kan D; Klei H; Marathe P; Pang S; Peterson R; Pitt S; Schieven GL; Schmidt RJ; Tokarski J; Wen ML; Wityak J; Borzilleri RM, Discovery of N-(2-chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem 2004, 47 (27), 6658–61. PubMed
Li J; Rix U; Fang B; Bai Y; Edwards A; Colinge J; Bennett KL; Gao J; Song L; Eschrich S; Superti-Furga G; Koomen J; Haura EB, A chemical and phosphoproteomic characterization of dasatinib action in lung cancer. Nat Chem Biol 2010, 6 (4), 291–9. PubMed PMC
Rix U; Hantschel O; Durnberger G; Remsing Rix LL; Planyavsky M; Fernbach NV; Kaupe I; Bennett KL; Valent P; Colinge J; Kocher T; Superti-Furga G, Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood 2007, 110 (12), 4055–63. PubMed
Karaman MW; Herrgard S; Treiber DK; Gallant P; Atteridge CE; Campbell BT; Chan KW; Ciceri P; Davis MI; Edeen PT; Faraoni R; Floyd M; Hunt JP; Lockhart DJ; Milanov ZV; Morrison MJ; Pallares G; Patel HK; Pritchard S; Wodicka LM; Zarrinkar PP, A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 2008, 26 (1), 127–32. PubMed
Kwiatkowski N; Zhang T; Rahl PB; Abraham BJ; Reddy J; Ficarro SB; Dastur A; Amzallag A; Ramaswamy S; Tesar B; Jenkins CE; Hannett NM; McMillin D; Sanda T; Sim T; Kim ND; Look T; Mitsiades CS; Weng AP; Brown JR; Benes CH; Marto JA; Young RA; Gray NS, Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 2014, 511 (7511), 616–20. PubMed PMC
Zeng M; Kwiatkowski NP; Zhang T; Nabet B; Xu M; Liang Y; Quan C; Wang J; Hao M; Palakurthi S; Zhou S; Zeng Q; Kirschmeier PT; Meghani K; Leggett AL; Qi J; Shapiro GI; Liu JF; Matulonis UA; Lin CY; Konstantinopoulos PA; Gray NS, Targeting MYC dependency in ovarian cancer through inhibition of CDK7 and CDK12/13. Elife 2018, 7. PubMed PMC
THZ1 KINOMEscan. https://lincs.hms.harvard.edu/db/datasets/20334/main (accessed April 10, 2021).
Zhang T; Kwiatkowski N; Olson CM; DixonClarke SE; Abraham BJ; Greifenberg AK; Ficarro SB; Elkins JM; Liang Y; Hannett NM; Manz T; Hao M; Bartkowiak B; Greenleaf AL; Marto JA; Geyer M; Bullock AN; Young RA; Gray NS, Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. Nat Chem Biol 2016, 12 (10), 876–84. PubMed PMC
Hatcher JM; Wu G; Zeng C; Zhu J; Meng F; Patel S; Wang W; Ficarro SB; Leggett AL; Powell CE; Marto JA; Zhang K; Ki Ngo JC; Fu XD; Zhang T; Gray NS, SRPKIN-1: A Covalent SRPK1/2 Inhibitor that Potently Converts VEGF from Pro-angiogenic to Anti-angiogenic Isoform. Cell Chem Biol 2018, 25 (4), 460–470 e6. PubMed PMC
Uhlen M; Fagerberg L; Hallstrom BM; Lindskog C; Oksvold P; Mardinoglu A; Sivertsson A; Kampf C; Sjostedt E; Asplund A; Olsson I; Edlund K; Lundberg E; Navani S; Szigyarto CA; Odeberg J; Djureinovic D; Takanen JO; Hober S; Alm T; Edqvist PH; Berling H; Tegel H; Mulder J; Rockberg J; Nilsson P; Schwenk JM; Hamsten M; von Feilitzen K; Forsberg M; Persson L; Johansson F; Zwahlen M; von Heijne G; Nielsen J; Ponten F, Proteomics. Tissue-based map of the human proteome. Science 2015, 347 (6220), 1260419. PubMed
Leenders F; Mopert K; Schmiedeknecht A; Santel A; Czauderna F; Aleku M; Penschuck S; Dames S; Sternberger M; Rohl T; Wellmann A; Arnold W; Giese K; Kaufmann J; Klippel A, PKN3 is required for malignant prostate cell growth downstream of activated PI 3-kinase. EMBO J 2004, 23 (16), 3303–13. PubMed PMC
Unsal-Kacmaz K; Ragunathan S; Rosfjord E; Dann S; Upeslacis E; Grillo M; Hernandez R; Mack F; Klippel A, The interaction of PKN3 with RhoC promotes malignant growth. Mol Oncol 2012, 6 (3), 284–98. PubMed PMC
Dark Kinase Knowledgebase. https://darkkinome.org/compounds/NK-215 (accessed April 10, 2021).
Drewry DH; Wells CI; Andrews DM; Angell R; Al-Ali H; Axtman AD; Capuzzi SJ; Elkins JM; Ettmayer P; Frederiksen M; Gileadi O; Gray N; Hooper A; Knapp S; Laufer S; Luecking U; Michaelides M; Muller S; Muratov E; Denny RA; Saikatendu KS; Treiber DK; Zuercher WJ; Willson TM, Progress towards a public chemogenomic set for protein kinases and a call for contributions. PLoS One 2017, 12 (8), e0181585. PubMed PMC
Clague MJ; Urbe S; Komander D, Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol 2019, 20 (6), 338–352. PubMed
Liu Y; Patricelli MP; Cravatt BF, Activity-based protein profiling: the serine hydrolases. Proc Natl Acad Sci U S A 1999, 96 (26), 14694–9. PubMed PMC
Zhu H; Li X; Qu J; Xiao C; Jiang K; Gashash E; Liu D; Song J; Cheng J; Ma C; Wang PG, Diethylaminoethyl Sepharose (DEAE-Sepharose) microcolumn for enrichment of glycopeptides. Anal Bioanal Chem 2017, 409 (2), 511–518. PubMed
Vasilopoulou CG; Sulek K; Brunner AD; Meitei NS; Schweiger-Hufnagel U; Meyer SW; Barsch A; Mann M; Meier F, Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nat Commun 2020, 11 (1), 331. PubMed PMC