Visualizing designer quantum states in stable macrocycle quantum corrals
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MOE2019-T2-2-044
Ministry of Education - Singapore (MOE)
R-143-000-B58-114
Ministry of Education - Singapore (MOE)
PubMed
34625542
PubMed Central
PMC8501084
DOI
10.1038/s41467-021-26198-8
PII: 10.1038/s41467-021-26198-8
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Creating atomically precise quantum architectures with high digital fidelity and desired quantum states is an important goal in a new era of quantum technology. The strategy of creating these quantum nanostructures mainly relies on atom-by-atom, molecule-by-molecule manipulation or molecular assembly through non-covalent interactions, which thus lack sufficient chemical robustness required for on-chip quantum device operation at elevated temperature. Here, we report a bottom-up synthesis of covalently linked organic quantum corrals (OQCs) with atomic precision to induce the formation of topology-controlled quantum resonance states, arising from a collective interference of scattered electron waves inside the quantum nanocavities. Individual OQCs host a series of atomic orbital-like resonance states whose orbital hybridization into artificial homo-diatomic and hetero-diatomic molecular-like resonance states can be constructed in Cassini oval-shaped OQCs with desired topologies corroborated by joint ab initio and analytic calculations. Our studies open up a new avenue to fabricate covalently linked large-sized OQCs with atomic precision to engineer desired quantum states with high chemical robustness and digital fidelity for future practical applications.
Centre for Advanced 2D Materials National University of Singapore Singapore 117543 Singapore
Department of Chemistry National University of Singapore Singapore 117543 Singapore
Institute of Physics Czech Academy of Sciences Prague 16200 Czech Republic
Yale NUS College 16 College Avenue West Singapore 138527 Singapore
Zobrazit více v PubMed
Crommie MF, Lutz CP, Eigler DM. Confinement of electrons to quantum corrals on a metal surface. Science. 1993;262:218–220. doi: 10.1126/science.262.5131.218. PubMed DOI
Manoharan HC, Lutz CP, Eigler DM. Quantum mirages formed by coherent projection of electronic structure. Nature. 2000;403:512–515. doi: 10.1038/35000508. PubMed DOI
Fiete GA, Heller EJ. Colloquium: Theory of quantum corrals and quantum mirages. Rev. Mod. Phys. 2003;75:933–948. doi: 10.1103/RevModPhys.75.933. DOI
Moon CR, Mattos LS, Foster BK, Zeltzer G, Manoharan HC. Quantum holographic encoding in a two-dimensional electron gas. Nat. Nanotechnol. 2009;4:167–172. doi: 10.1038/nnano.2008.415. PubMed DOI
Heller EJ, Crommie MF, Lutz CP, Eigler DM. Scattering and absorption of surface electron waves in quantum corrals. Nature. 1994;369:464–466. doi: 10.1038/369464a0. DOI
Braun KF, Rieder KH. Engineering electronic lifetimes in artificial atomic structures. Phys. Rev. Lett. 2002;88:096801. doi: 10.1103/PhysRevLett.88.096801. PubMed DOI
Stilp, F. et al. Very weak bonds to artificial atoms formed by quantum corrals. Science372,1196–1200 (2021). PubMed
Moon CR, et al. Quantum phase extraction in isospectral electronic nanostructures. Science. 2008;319:782–787. doi: 10.1126/science.1151490. PubMed DOI
Gomes KK, Mar W, Ko W, Guinea F, Manoharan HC. Designer Dirac fermions and topological phases in molecular graphene. Nature. 2012;483:306–310. doi: 10.1038/nature10941. PubMed DOI
Paavilainen S, Ropo M, Nieminen J, Akola J, Räsänen E. Coexisting honeycomb and Kagome characteristics in the electronic band structure of molecular graphene. Nano Lett. 2016;16:3519–3523. doi: 10.1021/acs.nanolett.6b00397. PubMed DOI
Slot MR, et al. Experimental realization and characterization of an electronic Lieb lattice. Nat. Phys. 2017;13:672–676. doi: 10.1038/nphys4105. PubMed DOI PMC
Pennec Y, et al. Supramolecular gratings for tuneable confinement of electrons on metal surfaces. Nat. Nanotechnol. 2007;2:99–103. doi: 10.1038/nnano.2006.212. PubMed DOI
Klappenberger F, et al. Dichotomous array of chiral quantum corrals by a self-assembled nanoporous kagomé network. Nano Lett. 2009;9:3509–3514. doi: 10.1021/nl901700b. PubMed DOI
Lobo-Checa J, et al. Band formation from coupled quantum dots formed by a nanoporous network on a copper surface. Science. 2009;325:300–303. doi: 10.1126/science.1175141. PubMed DOI
Klappenberger F, et al. Tunable quantum dot arrays formed from self-assembled metal-organic networks. Phys. Rev. Lett. 2011;106:026802. doi: 10.1103/PhysRevLett.106.026802. PubMed DOI
Wyrick J, et al. Do two-dimensional “noble gas atoms” produce molecular honeycombs at a metal surface? Nano Lett. 2011;11:2944–2948. doi: 10.1021/nl201441b. PubMed DOI
Wang S, et al. Tuning two-dimensional band structure of Cu(111) surface-state electrons that interplay with artificial supramolecular architectures. Phys. Rev. B. 2013;88:245430. doi: 10.1103/PhysRevB.88.245430. DOI
Kepčija N, Huang TJ, Klappenberger F, Barth JV. Quantum confinement in self-assembled two-dimensional nanoporous honeycomb networks at close-packed metal surfaces. J. Chem. Phys. 2015;142:101931. doi: 10.1063/1.4913244. PubMed DOI
Müller K, Enache M, Stöhr M. Confinement properties of 2D porous molecular networks on metal surfaces. J. Phys. Condens. Matter. 2016;28:153003. doi: 10.1088/0953-8984/28/15/153003. PubMed DOI
Zhang YQ, Björk J, Barth JV, Klappenberger F. Intermolecular hybridization creating nanopore orbital in a supramolecular hydrocarbon sheet. Nano Lett. 2016;16:4274–4281. doi: 10.1021/acs.nanolett.6b01324. PubMed DOI
Piquero-Zulaica I, et al. Precise engineering of quantum dot array coupling through their barrier widths. Nat. Commun. 2017;8:787. doi: 10.1038/s41467-017-00872-2. PubMed DOI PMC
Su J, et al. On-surface synthesis and characterization of [7]Triangulene quantum ring. Nano Lett. 2021;21:861–867. doi: 10.1021/acs.nanolett.0c04627. PubMed DOI
Telychko M, et al. Ultrahigh-yield on-surface synthesis and assembly of circumcoronene into a chiral electronic Kagome-honeycomb lattice. Sci. Adv. 2021;7:eabf0269. doi: 10.1126/sciadv.abf0269. PubMed DOI PMC
Fan Q, et al. Surface-assisted organic synthesis of hyperbenzene nanotroughs. Angew. Chem. Int. Ed. 2013;52:4668–4672. doi: 10.1002/anie.201300610. PubMed DOI
Summerfield A, et al. Ordering, flexibility and frustration in arrays of porphyrin nanorings. Nat. Commun. 2019;10:2932. doi: 10.1038/s41467-019-11009-y. PubMed DOI PMC
Kaiser K, et al. An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science. 2019;365:1299–1301. doi: 10.1126/science.aay1914. PubMed DOI
Fan C, et al. On-surface synthesis of giant conjugated macrocycles. Angew. Chem. Int. Ed. 2021;60:1–5. doi: 10.1002/anie.202015604. PubMed DOI
Reinert F, Nicolay G, Schmidt S, Ehm D, Hüfner S. Direct measurements of the L-gap surface states on the (111) face of noble metals by photoelectron spectroscopy. Phys. Rev. B. 2001;63:115415. doi: 10.1103/PhysRevB.63.115415. DOI
Kevan SD, Gaylord RH. High-resolution photoemission study of the electronic structure of the noble-metal (111)surfaces. Phys. Rev. B. 1987;36:5809. doi: 10.1103/PhysRevB.36.5809. PubMed DOI
Liu M, et al. High-yield formation of graphdiyne macrocycles through on-surface assembling and coupling reaction. ACS Nano. 2018;12:12612–12618. doi: 10.1021/acsnano.8b07349. PubMed DOI
Fritton M, et al. The role of kinetics versus thermodynamics in surface-assisted Ullmann coupling on gold and silver surfaces. J. Am. Chem. Soc. 2019;141:4824–4832. doi: 10.1021/jacs.8b11473. PubMed DOI
Krug CK, Nieckarz D, Fan Q, Szabelski P, Gottfried JM. The Macrocycle versus chain competition in on-surface polymerization: insights from reactions of 1,3-dibromoazulene on Cu(111) Chem. Eur. J. 2020;26:7647–7656. doi: 10.1002/chem.202000486. PubMed DOI PMC
Zheng Y, et al. Designer spin order in diradical nanographenes. Nat. Commun. 2020;11:6076. doi: 10.1038/s41467-020-19834-2. PubMed DOI PMC
Zheng Y, et al. Engineering of magnetic coupling in nanographene. Phys. Rev. Lett. 2020;124:147206. doi: 10.1103/PhysRevLett.124.147206. PubMed DOI
Mishra S, et al. Topological defect-induced magnetism in a nanographene. J. Am. Chem. Soc. 2020;142:1147–1152. doi: 10.1021/jacs.9b09212. PubMed DOI
Steiner C, et al. Hierarchical on-surface synthesis and electronic structure of carbonyl-functionalized one- and two-dimensional covalent nanoarchitectures. Nat. Commun. 2017;8:14765. doi: 10.1038/ncomms14765. PubMed DOI PMC
Nguyen GD, et al. Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor. Nat. Nanotechnol. 2017;12:1077–1082. doi: 10.1038/nnano.2017.155. PubMed DOI
Li J, et al. Survival of spin state in magnetic porphyrins contacted by graphene nanoribbons. Sci. Adv. 2018;4:eaaq0582. doi: 10.1126/sciadv.aaq0582. PubMed DOI PMC
Li J, et al. Uncovering the triplet ground state of triangular graphene nanoflakes engineered with atomic precision on a metal surface. Phys. Rev. Lett. 2020;124:177201. doi: 10.1103/PhysRevLett.124.177201. PubMed DOI
Song S, et al. Real-space imaging of a single-molecule monoradical reaction. J. Am. Chem. Soc. 2020;142:13550–13557. doi: 10.1021/jacs.0c05337. PubMed DOI
Hapala P, et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B. 2014;90:085421. doi: 10.1103/PhysRevB.90.085421. PubMed DOI
Hapala P, Temirov R, Tautz FS, Jelínek P. Origin of high-resolution IETS-STM images of organic molecules with functionalized tips. Phys. Rev. Lett. 2014;113:226101. doi: 10.1103/PhysRevLett.113.226101. PubMed DOI
Krejčí O, Hapala P, Ondráček M, Jelínek P. Principles and simulations of high-resolution STM imaging with a flexible tip apex. Phys. Rev. B. 2017;95:045407. doi: 10.1103/PhysRevB.95.045407. DOI
Taber BN, et al. Quantum confinement of surface electrons by molecular nanohoop corrals. J. Phys. Chem. Lett. 2016;7:3073–3077. doi: 10.1021/acs.jpclett.6b01279. PubMed DOI
Ishii H, Sugiyama K, Ito E, Seki K. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 1999;11:605–625. doi: 10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q. DOI
Braun S, Salaneck WR, Fahlman M. Energy-level alignment at organic/metal and organic/organic interfaces. Adv. Mater. 2009;21:1450–1472. doi: 10.1002/adma.200802893. DOI
Mahan, G. D. Many-Particle Physics. Physics of Solids and Liquids (Springer US, 2000).
Chen W, Madhavan V, Jamneala T, Crommie MF. Scanning tunneling microscopy observation of an electronic superlattice at the surface of clean gold. Phys. Rev. Lett. 1998;80:1469–1472. doi: 10.1103/PhysRevLett.80.1469. DOI
Bürgi L, Brune H, Kern K. Imaging of electron potential landscapes on Au(111) Phys. Rev. Lett. 2002;89:176801. doi: 10.1103/PhysRevLett.89.176801. PubMed DOI
Schouteden K, et al. Confinement of surface state electrons in self-organized Co islands on Au(111) N. J. Phys. 2008;10:43016. doi: 10.1088/1367-2630/10/4/043016. DOI
Schouteden K, Lievens P, Van Haesendonck C. Fourier-transform scanning tunneling microscopy investigation of the energy versus wave vector dispersion of electrons at the Au(111) surface. Phys. Rev. B. 2009;79:195409. doi: 10.1103/PhysRevB.79.195409. DOI
Hasegawa Y, Avouris P. Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy. Phys. Rev. Lett. 1993;71:1071. doi: 10.1103/PhysRevLett.71.1071. PubMed DOI
Petersen L, Laitenberger P, Lægsgaard E, Besenbacher F. Screening waves from steps and defects on Cu(111) and Au(111) imaged with STM: contribution from bulk electrons. Phys. Rev. B. 1998;58:7361–7366. doi: 10.1103/PhysRevB.58.7361. DOI
Petersen L, et al. Direct imaging of the two-dimensional Fermi contour: Fourier-transform STM. Phys. Rev. B. 1998;57:R6858. doi: 10.1103/PhysRevB.57.R6858. DOI
Gross L, et al. Scattering of surface state electrons at large organic molecules. Phys. Rev. Lett. 2004;93:056103. doi: 10.1103/PhysRevLett.93.056103. PubMed DOI
Seufert K, et al. Controlled interaction of surface quantum-well electronic states. Nano Lett. 2013;13:6130–6135. doi: 10.1021/nl403459m. PubMed DOI
Lewis JP, et al. Advances and applications in the FIREBALL ab initio tight-binding molecular-dynamics formalism. Phys. Status Solidi B Basic Res. 2011;248:1989–2007. doi: 10.1002/pssb.201147259. DOI
Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098. PubMed DOI
Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI
Basanta MA, Dappe YJ, Jelínek P, Ortega J. Optimized atomic-like orbitals for first-principles tight-binding molecular dynamics. Comput. Mater. Sci. 2007;39:759–766. doi: 10.1016/j.commatsci.2006.09.003. DOI
Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: a fresh approach to numerical computing. SIAM Rev. 2017;59:65. doi: 10.1137/141000671. DOI
Mahalingam, H. & Rodin, A. Visualizing designer quantum states in stable macrocycle quantum corrals. rodin-physics/au-polymer. 10.5281/zenodo.5497903 (2021). PubMed PMC