Visualizing designer quantum states in stable macrocycle quantum corrals

. 2021 Oct 08 ; 12 (1) : 5895. [epub] 20211008

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34625542

Grantová podpora
MOE2019-T2-2-044 Ministry of Education - Singapore (MOE)
R-143-000-B58-114 Ministry of Education - Singapore (MOE)

Odkazy

PubMed 34625542
PubMed Central PMC8501084
DOI 10.1038/s41467-021-26198-8
PII: 10.1038/s41467-021-26198-8
Knihovny.cz E-zdroje

Creating atomically precise quantum architectures with high digital fidelity and desired quantum states is an important goal in a new era of quantum technology. The strategy of creating these quantum nanostructures mainly relies on atom-by-atom, molecule-by-molecule manipulation or molecular assembly through non-covalent interactions, which thus lack sufficient chemical robustness required for on-chip quantum device operation at elevated temperature. Here, we report a bottom-up synthesis of covalently linked organic quantum corrals (OQCs) with atomic precision to induce the formation of topology-controlled quantum resonance states, arising from a collective interference of scattered electron waves inside the quantum nanocavities. Individual OQCs host a series of atomic orbital-like resonance states whose orbital hybridization into artificial homo-diatomic and hetero-diatomic molecular-like resonance states can be constructed in Cassini oval-shaped OQCs with desired topologies corroborated by joint ab initio and analytic calculations. Our studies open up a new avenue to fabricate covalently linked large-sized OQCs with atomic precision to engineer desired quantum states with high chemical robustness and digital fidelity for future practical applications.

Zobrazit více v PubMed

Crommie MF, Lutz CP, Eigler DM. Confinement of electrons to quantum corrals on a metal surface. Science. 1993;262:218–220. doi: 10.1126/science.262.5131.218. PubMed DOI

Manoharan HC, Lutz CP, Eigler DM. Quantum mirages formed by coherent projection of electronic structure. Nature. 2000;403:512–515. doi: 10.1038/35000508. PubMed DOI

Fiete GA, Heller EJ. Colloquium: Theory of quantum corrals and quantum mirages. Rev. Mod. Phys. 2003;75:933–948. doi: 10.1103/RevModPhys.75.933. DOI

Moon CR, Mattos LS, Foster BK, Zeltzer G, Manoharan HC. Quantum holographic encoding in a two-dimensional electron gas. Nat. Nanotechnol. 2009;4:167–172. doi: 10.1038/nnano.2008.415. PubMed DOI

Heller EJ, Crommie MF, Lutz CP, Eigler DM. Scattering and absorption of surface electron waves in quantum corrals. Nature. 1994;369:464–466. doi: 10.1038/369464a0. DOI

Braun KF, Rieder KH. Engineering electronic lifetimes in artificial atomic structures. Phys. Rev. Lett. 2002;88:096801. doi: 10.1103/PhysRevLett.88.096801. PubMed DOI

Stilp, F. et al. Very weak bonds to artificial atoms formed by quantum corrals. PubMed

Moon CR, et al. Quantum phase extraction in isospectral electronic nanostructures. Science. 2008;319:782–787. doi: 10.1126/science.1151490. PubMed DOI

Gomes KK, Mar W, Ko W, Guinea F, Manoharan HC. Designer Dirac fermions and topological phases in molecular graphene. Nature. 2012;483:306–310. doi: 10.1038/nature10941. PubMed DOI

Paavilainen S, Ropo M, Nieminen J, Akola J, Räsänen E. Coexisting honeycomb and Kagome characteristics in the electronic band structure of molecular graphene. Nano Lett. 2016;16:3519–3523. doi: 10.1021/acs.nanolett.6b00397. PubMed DOI

Slot MR, et al. Experimental realization and characterization of an electronic Lieb lattice. Nat. Phys. 2017;13:672–676. doi: 10.1038/nphys4105. PubMed DOI PMC

Pennec Y, et al. Supramolecular gratings for tuneable confinement of electrons on metal surfaces. Nat. Nanotechnol. 2007;2:99–103. doi: 10.1038/nnano.2006.212. PubMed DOI

Klappenberger F, et al. Dichotomous array of chiral quantum corrals by a self-assembled nanoporous kagomé network. Nano Lett. 2009;9:3509–3514. doi: 10.1021/nl901700b. PubMed DOI

Lobo-Checa J, et al. Band formation from coupled quantum dots formed by a nanoporous network on a copper surface. Science. 2009;325:300–303. doi: 10.1126/science.1175141. PubMed DOI

Klappenberger F, et al. Tunable quantum dot arrays formed from self-assembled metal-organic networks. Phys. Rev. Lett. 2011;106:026802. doi: 10.1103/PhysRevLett.106.026802. PubMed DOI

Wyrick J, et al. Do two-dimensional “noble gas atoms” produce molecular honeycombs at a metal surface? Nano Lett. 2011;11:2944–2948. doi: 10.1021/nl201441b. PubMed DOI

Wang S, et al. Tuning two-dimensional band structure of Cu(111) surface-state electrons that interplay with artificial supramolecular architectures. Phys. Rev. B. 2013;88:245430. doi: 10.1103/PhysRevB.88.245430. DOI

Kepčija N, Huang TJ, Klappenberger F, Barth JV. Quantum confinement in self-assembled two-dimensional nanoporous honeycomb networks at close-packed metal surfaces. J. Chem. Phys. 2015;142:101931. doi: 10.1063/1.4913244. PubMed DOI

Müller K, Enache M, Stöhr M. Confinement properties of 2D porous molecular networks on metal surfaces. J. Phys. Condens. Matter. 2016;28:153003. doi: 10.1088/0953-8984/28/15/153003. PubMed DOI

Zhang YQ, Björk J, Barth JV, Klappenberger F. Intermolecular hybridization creating nanopore orbital in a supramolecular hydrocarbon sheet. Nano Lett. 2016;16:4274–4281. doi: 10.1021/acs.nanolett.6b01324. PubMed DOI

Piquero-Zulaica I, et al. Precise engineering of quantum dot array coupling through their barrier widths. Nat. Commun. 2017;8:787. doi: 10.1038/s41467-017-00872-2. PubMed DOI PMC

Su J, et al. On-surface synthesis and characterization of [7]Triangulene quantum ring. Nano Lett. 2021;21:861–867. doi: 10.1021/acs.nanolett.0c04627. PubMed DOI

Telychko M, et al. Ultrahigh-yield on-surface synthesis and assembly of circumcoronene into a chiral electronic Kagome-honeycomb lattice. Sci. Adv. 2021;7:eabf0269. doi: 10.1126/sciadv.abf0269. PubMed DOI PMC

Fan Q, et al. Surface-assisted organic synthesis of hyperbenzene nanotroughs. Angew. Chem. Int. Ed. 2013;52:4668–4672. doi: 10.1002/anie.201300610. PubMed DOI

Summerfield A, et al. Ordering, flexibility and frustration in arrays of porphyrin nanorings. Nat. Commun. 2019;10:2932. doi: 10.1038/s41467-019-11009-y. PubMed DOI PMC

Kaiser K, et al. An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science. 2019;365:1299–1301. doi: 10.1126/science.aay1914. PubMed DOI

Fan C, et al. On-surface synthesis of giant conjugated macrocycles. Angew. Chem. Int. Ed. 2021;60:1–5. doi: 10.1002/anie.202015604. PubMed DOI

Reinert F, Nicolay G, Schmidt S, Ehm D, Hüfner S. Direct measurements of the L-gap surface states on the (111) face of noble metals by photoelectron spectroscopy. Phys. Rev. B. 2001;63:115415. doi: 10.1103/PhysRevB.63.115415. DOI

Kevan SD, Gaylord RH. High-resolution photoemission study of the electronic structure of the noble-metal (111)surfaces. Phys. Rev. B. 1987;36:5809. doi: 10.1103/PhysRevB.36.5809. PubMed DOI

Liu M, et al. High-yield formation of graphdiyne macrocycles through on-surface assembling and coupling reaction. ACS Nano. 2018;12:12612–12618. doi: 10.1021/acsnano.8b07349. PubMed DOI

Fritton M, et al. The role of kinetics versus thermodynamics in surface-assisted Ullmann coupling on gold and silver surfaces. J. Am. Chem. Soc. 2019;141:4824–4832. doi: 10.1021/jacs.8b11473. PubMed DOI

Krug CK, Nieckarz D, Fan Q, Szabelski P, Gottfried JM. The Macrocycle versus chain competition in on-surface polymerization: insights from reactions of 1,3-dibromoazulene on Cu(111) Chem. Eur. J. 2020;26:7647–7656. doi: 10.1002/chem.202000486. PubMed DOI PMC

Zheng Y, et al. Designer spin order in diradical nanographenes. Nat. Commun. 2020;11:6076. doi: 10.1038/s41467-020-19834-2. PubMed DOI PMC

Zheng Y, et al. Engineering of magnetic coupling in nanographene. Phys. Rev. Lett. 2020;124:147206. doi: 10.1103/PhysRevLett.124.147206. PubMed DOI

Mishra S, et al. Topological defect-induced magnetism in a nanographene. J. Am. Chem. Soc. 2020;142:1147–1152. doi: 10.1021/jacs.9b09212. PubMed DOI

Steiner C, et al. Hierarchical on-surface synthesis and electronic structure of carbonyl-functionalized one- and two-dimensional covalent nanoarchitectures. Nat. Commun. 2017;8:14765. doi: 10.1038/ncomms14765. PubMed DOI PMC

Nguyen GD, et al. Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor. Nat. Nanotechnol. 2017;12:1077–1082. doi: 10.1038/nnano.2017.155. PubMed DOI

Li J, et al. Survival of spin state in magnetic porphyrins contacted by graphene nanoribbons. Sci. Adv. 2018;4:eaaq0582. doi: 10.1126/sciadv.aaq0582. PubMed DOI PMC

Li J, et al. Uncovering the triplet ground state of triangular graphene nanoflakes engineered with atomic precision on a metal surface. Phys. Rev. Lett. 2020;124:177201. doi: 10.1103/PhysRevLett.124.177201. PubMed DOI

Song S, et al. Real-space imaging of a single-molecule monoradical reaction. J. Am. Chem. Soc. 2020;142:13550–13557. doi: 10.1021/jacs.0c05337. PubMed DOI

Hapala P, et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B. 2014;90:085421. doi: 10.1103/PhysRevB.90.085421. PubMed DOI

Hapala P, Temirov R, Tautz FS, Jelínek P. Origin of high-resolution IETS-STM images of organic molecules with functionalized tips. Phys. Rev. Lett. 2014;113:226101. doi: 10.1103/PhysRevLett.113.226101. PubMed DOI

Krejčí O, Hapala P, Ondráček M, Jelínek P. Principles and simulations of high-resolution STM imaging with a flexible tip apex. Phys. Rev. B. 2017;95:045407. doi: 10.1103/PhysRevB.95.045407. DOI

Taber BN, et al. Quantum confinement of surface electrons by molecular nanohoop corrals. J. Phys. Chem. Lett. 2016;7:3073–3077. doi: 10.1021/acs.jpclett.6b01279. PubMed DOI

Ishii H, Sugiyama K, Ito E, Seki K. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 1999;11:605–625. doi: 10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q. DOI

Braun S, Salaneck WR, Fahlman M. Energy-level alignment at organic/metal and organic/organic interfaces. Adv. Mater. 2009;21:1450–1472. doi: 10.1002/adma.200802893. DOI

Mahan, G. D.

Chen W, Madhavan V, Jamneala T, Crommie MF. Scanning tunneling microscopy observation of an electronic superlattice at the surface of clean gold. Phys. Rev. Lett. 1998;80:1469–1472. doi: 10.1103/PhysRevLett.80.1469. DOI

Bürgi L, Brune H, Kern K. Imaging of electron potential landscapes on Au(111) Phys. Rev. Lett. 2002;89:176801. doi: 10.1103/PhysRevLett.89.176801. PubMed DOI

Schouteden K, et al. Confinement of surface state electrons in self-organized Co islands on Au(111) N. J. Phys. 2008;10:43016. doi: 10.1088/1367-2630/10/4/043016. DOI

Schouteden K, Lievens P, Van Haesendonck C. Fourier-transform scanning tunneling microscopy investigation of the energy versus wave vector dispersion of electrons at the Au(111) surface. Phys. Rev. B. 2009;79:195409. doi: 10.1103/PhysRevB.79.195409. DOI

Hasegawa Y, Avouris P. Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy. Phys. Rev. Lett. 1993;71:1071. doi: 10.1103/PhysRevLett.71.1071. PubMed DOI

Petersen L, Laitenberger P, Lægsgaard E, Besenbacher F. Screening waves from steps and defects on Cu(111) and Au(111) imaged with STM: contribution from bulk electrons. Phys. Rev. B. 1998;58:7361–7366. doi: 10.1103/PhysRevB.58.7361. DOI

Petersen L, et al. Direct imaging of the two-dimensional Fermi contour: Fourier-transform STM. Phys. Rev. B. 1998;57:R6858. doi: 10.1103/PhysRevB.57.R6858. DOI

Gross L, et al. Scattering of surface state electrons at large organic molecules. Phys. Rev. Lett. 2004;93:056103. doi: 10.1103/PhysRevLett.93.056103. PubMed DOI

Seufert K, et al. Controlled interaction of surface quantum-well electronic states. Nano Lett. 2013;13:6130–6135. doi: 10.1021/nl403459m. PubMed DOI

Lewis JP, et al. Advances and applications in the FIREBALL ab initio tight-binding molecular-dynamics formalism. Phys. Status Solidi B Basic Res. 2011;248:1989–2007. doi: 10.1002/pssb.201147259. DOI

Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098. PubMed DOI

Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI

Basanta MA, Dappe YJ, Jelínek P, Ortega J. Optimized atomic-like orbitals for first-principles tight-binding molecular dynamics. Comput. Mater. Sci. 2007;39:759–766. doi: 10.1016/j.commatsci.2006.09.003. DOI

Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: a fresh approach to numerical computing. SIAM Rev. 2017;59:65. doi: 10.1137/141000671. DOI

Mahalingam, H. & Rodin, A. Visualizing designer quantum states in stable macrocycle quantum corrals. rodin-physics/au-polymer. 10.5281/zenodo.5497903 (2021). PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Visualizing designer quantum states in stable macrocycle quantum corrals

. 2021 Oct 08 ; 12 (1) : 5895. [epub] 20211008

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...