Characterization of the gut microbes of greater wax moth (Galleria mellonella Linnaeus) shows presence of potential polymer degraders

. 2022 Feb ; 67 (1) : 133-141. [epub] 20211010

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34628573
Odkazy

PubMed 34628573
DOI 10.1007/s12223-021-00925-6
PII: 10.1007/s12223-021-00925-6
Knihovny.cz E-zdroje

Greater wax moth (GWM), Galleria mellonella (Lepidoptera: Pyralidae), is a highly destructive honey bee pest prevalent throughout the world. It is considered as a major factor to the alarming decline in honey bee population. GWM destroys active honey combs as it feeds on the beeswax and lays eggs in bee hives, and the primary food of their larva is beeswax. Beeswax is a polymer composed mainly of saturated and unsaturated, linear and complex monoesters, and hydrocarbons. The most frequent bond in beeswax is ethene (CH2-CH2) which is also found in the common plastic polyethylene. As wax-digestion is not a common animal character, we hypothesized about a possible role of GWM gut microflora in the process; which could possibly degrade polyethylene-like polymers as well. This study was aimed to identify the GWM gut microflora via culture-dependant approach. We characterized several bacterial species based on the culture characteristics, Gram-reaction, and various biochemical tests. Sequencing of 16S-rDNA revealed nine bacterial and one microalgal species from GWM gut. The bacterial species included Gram-positive Exiguobacterium aestuarii, Bacillus circulans, Microbacterium zaea, Microbacterium sp. and Enterococcus faecalis; Gram-negative Agrobacterium sp., Sphingomonas pseudosanguinis, Sphingobium yanoikuyae and Acinetobacter radioresistens; the microalgae was Picochlorum oklahomensis. Some of them have been previously reported to degrade polycyclic aromatic hydrocarbon, low-density polyethylene, and 2-methylphenanthrene. Meanwhile, the microalga, P. oklahomensis, was reported to steal bacterial genes to adapt with abiotic stresses. Further investigation is necessary to explore the precise details about polymer degrading capabilities of these microbes; nevertheless, this study builds a foundation for elaborate and advanced future research.

Zobrazit více v PubMed

Akratanakul P (1987) Honeybee diseases and enemies in Asia: a practical guide; Food & Agriculture Organization: Rome, Italy

Anand AAM, Vennison SH, Sankar SG, Prabhu DIG, Vasan PT, Raghuraman T, Geoffrey CJ, Vendan SE (2010) Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. J Insect Sci 10:1–20 DOI

Bafana A, Chakrabarti T, Muthal P, Kanade G (2009) Detoxification of benzidine-based azo dye by E. gallinarum: time-course Study. Ecotoxicol Environ Saf 72:960

Bombelli P, Howe CJ, Bertocchini F (2017) Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr Biol 27:283–293 DOI

Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487 DOI

Broderick NA, Raffa KF, Goodman RM, Handelsman J (2004) Census of bacterial community of gypsy moth larvae mid gut by using culturing and culture independent methods. Appl Environ Microbiol 70:290–300 DOI

Brune A (2009) Symbionts aiding digestion. In: Resh VH, RT Carde (ed), Encyclopedia of Insects, 2

Burges HD (1978) Control of wax moth: physical, chemical and biological methods. Bee World 59:129–138 DOI

Chalup A, Ayup MM, Garzia ACM, Malizia A, Martin E, Cristobal RD, Galindo-Cardona A (2018) First report of the lesser wax moth Achroia grisella F. (Lepidoptera: Pyralidae) consuming polyethylene (silo-bag) in northwestern Argentina. Apic Res 57:569–571 DOI

Chang CP, Hsieh FK (1992) Morphology and bionomics of Galleria mellonella. Chin J Entomol 12:121–129

Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Ann Rev Entomol 60:17–34 DOI

Downs CT, Van Dyk RJ, Iji P (2002) Wax digestion by the lesser honeyguide, Indicator minor. Comp Biochem Physiol Part A Mol Integr Physiol 133:125–134 DOI

Engel P, Moran NA (2013) The gut microbiota of insects — diversity in structure and function. FEMS Microbiol Rev 37:699–735 DOI

Foflonker F, Mollegard D, Ong M, Yoon HS, Bhattacharya D (2018) Genomic analysis of Picochlorum species reveals how microalgae may adapt to variable environments. Mol Biol Evol 35:2702–2711 PubMed

Gulati R, Kaushik H (2004) Enemies of honeybees and their management - A review. Agric Rev 25:189–200

Hosamanni V, Hanumanthswamy BC, Kattimani KN, Kalibavi CM (2017) Studies on Biology of Greater Wax moth (Galleria mellonella L.). Int J Curr Microbiol Appl Sci 6:3811–3815 DOI

Hussein AA, Khudhair SH, Al-Mayaly IK (2015) Optimum conditions for LDPE strips Biodegradation by Local Bacterial Isolates. Int J Environ Sci Technol 10:399–407

Iiyoshi Y, Tsutumi Y, Nishida T (1998) Polyethylene degradation by lignin-degrading fungi and manganese peroxidase. J Wood Sci 44:222–229 DOI

Kertesz MA, Kawasaki A (2010) Hydrocarbon degrading Sphingomonads: Sphingomonas, Sphingobium, Novasphingobium and Sphingopyxis. In: Timmis KN (ed) Handbook of Hydrocarbon and Lipid Microbiology Springer-Verlag, Berlin, Heidelberg, pp 1693–1705

Kounosu A, Murase K, Yoshida A, Maruyama H, Kikuchi T (2019) Improved 18S and 28S rDNA primer sets for NGS-based parasite detection. Sci Rep 9:15789. https://doi.org/10.1038/s41598-019-52422-z PubMed DOI PMC

Lalita KY, Yadav S (2018) Seasonal incidence of Greater wax moth, Galleria mellonella Linnaeus in Apis mellifera colonies in ecological condition of Hisar. J Entomol 6:790–795

Liang Q, Lloyd-Jones G (2010) Sphingobium scionense sp. nov., an aromatic hydrocarbon-degrading bacterium isolated from contaminated sawmill soil. Int J Syst Evo l60:413–416

Linnaeus C (1758) System of nature through the three kingdoms of nature, according to classes, orders, genera and species, with characters, differences, synonyms, places, 10th edition, Sweden, pp 657–784

Luo YR, Tian Y, Huang X, Kwon K, Yang SH, Seo HS, Kim SJ, Zheng TL (2012) Sphingomonas polyaromatic ivorans sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium from an oil port water sample. Int J Syst Evol 62:1223–1227 DOI

Madhusudan S, Jalali SK, Venkatesan T, Lalitha Y, Srinivas P (2011) 16S rRNA gene based identification of gut bacteria from field collected larvae of Helicoverpa armigera (Lepidoptera: Noctuidae) from tomato ecosystem. Asian J Biol Sci 6:106–113

Mahindre DB (1983) Handling rock bee colonies. Indian Bee J 45:72–73

Mohanan N, Montazer Z, Sharma PK, Levin DB (2020) Microbial and enzymatic degradation of synthetic plastics. Front Microbiol 11:580709.

Montazer Z, Habibi-Najafi MB (2018) Microbial degradation of UV-pretreated low-density polyethylene films by novel polyethylene-degrading bacteria isolated from plastic-dump soil. J Polym Environ 26:3613–3625 DOI

Moore E, Arnscheidt A, Kruger A, Strompl C, Mau M (2004) Simplified protocols for the preparation of genomic DNA from bacterial cultures. In: Akkrmans ADL, Elsas JDV, Bruijn FJD (ed) Molecular Microbial Ecology Manual, 2

Nagaraja N, Rajagopal D (2009) Honey bees diseases, parasites, pests, predators and their management. MJP publisher, Chennai, India

Ni’matuzahroh N, Gilewicz M, Guiliano M, Bertrand JC, (1999) In-vitro study of interaction between photooxidation and biodegradation of 2-methylephenanthrene by Sphingomonas sp. 2MPII. Chemosphere 38:2501–2507 DOI

Pathak VM, Navneet, (2017) Review on the current status of polymer degradation: a microbial approach. Bioresour Bioprocess 4:15. https://doi.org/10.1186/s40643-017-0145-9 DOI

Plastics Europe (2020) Plastics — the facts 2020: an analysis of european plastics production, demand and waste data 2020. Plastics Europe, Brussels, Belgium

Ragaert K, Delva L, Van Geem K (2017) Mechanical and chemical recycling of solid plastic waste. Waste Manage 69:24–58 DOI

Reeson AF, Fritsch EF, Kasper MI, Rogers S, Austin AD (2003) Application of 16S rRNA-DGGE to examine the microbial ecology associated with a social wasp Vespuila germanica. Insect Mol Biol 12:85–91 DOI

Ru J, Huo Y, Yang Y (2020) Microbial Degradation and Valorization of Plastic Wastes. Front Microbiol 21:1–20

Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265 DOI

Smith AC, Hussey MA (2005) Gram stain protocols, American Society for Microbiology, pp 1–9

Sudha M, SaranyaA SG (2014) Microbial degradation of azo dyes: a review. Int J Curr Microbiol Appl Sci 3:670–690

Tej MK, Aruna R, Mishra G, Srinivasan MR (2017) Beekeeping in India. In: Omkar (ed) Industrial entomology, Springer, India, pp 35–66

Thakur A, Dhammi P, Saini HS, Kaur S (2015) Pathogenecity of bacteria isolated from gut of Spodoptera litura (Lepidoptera: Noctuidae) and fitness costs of insect associated with consumption of bacteria. J Invertebr Pathol 127:38–46 DOI

Thakur D, Bhuyan M, Majumdar S, Yadav A, Hazarika LK, Harman N, Baruah AALH, Bora TC (2005) Isolation, characterization, in-vitro antibiotic susceptibility and pesticide tolerance of gut bacteria from rice hispa, Dicladispa armigera (Olivier). Indian J Med Microbiol 45:217–221

Vishwakarma R, Singh R, Ghatak SS (2012) Incidence of insect enemies on honey bee, Apis mellifera L. during floral dearth period. Indian J Entomol 74:78–81

Wang Y, Tian RM, Gao ZM, Bougouffa S, Qian PY (2014) Optimal eukaryotic 18S and universal 16S/18S ribosomal RNA primers and their application in a study of symbiosis. PLoS ONE 9:e90053. https://doi.org/10.1371/journal.pone.0090053 PubMed DOI PMC

Wu W, Yang S, Brandon AM, Yang Y, Flanagan JA, Fan HQ, Cai SY, Wang ZY, Din LY, Daliang N, Yang J, RenJ THC, Philips D, Ren NQ, Zhou J, Waymouth R, Criddle CS (2016) Rapid biodegradation of plastics by mealworms (larvae of Tenebrio molitor) brings hope to solve waste plastic pollution. American Geophysical Union, Fall Meeting Abstracts, pp H24A – H33

Yang J, Chen J, Wu WM, Zhao J, Yang J (2015a) Complete genome sequence of Bacillus sp. YP1, a polyethylene-degrading bacterium from waxworm’s gut. J Biotechnol 20:77–78 DOI

Yang J, Yang Y, Wu WM, Zhao J, Jiang L (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48:3776–3784 DOI

Yang SS, Brandon AM, Flanagan JCA, Yang J, Ning D, Cai SY, Fan HQ, Wang ZY, Ren J, Benbow E, Ren NQ, Waymouth RM, Zhou J, Criddle CS, Wu WM (2018) Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere 191:979–989 DOI

Yang SS, Ding MQ, He L, Zhang CH, Li QX, Xing DF, Cao GL, Zhao L, Ding J, Ren NQ, Wu WM (2021) Biodegradation of polypropylene by yellow mealworms (Tenebrio molitor) and superworms (Zophobas atratus) via gut-microbe-dependent depolymerisation. Sci Total Environ 756:144087. https://doi.org/10.1016/j.scitotenv.2020.144087

Yang Y, Yang J, Wu WM, Zhao J, Song YL, Gao LC, Yang R, Jiang L (2015b) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 1. Chemical and physical characterization and isotopic tests. Environ Sci Technol 49:12080–12086 DOI

Yang Y, Yang J, Wu WM, Zhao J, Song YL, Gao LC, Yang R, Jiang L (2015c) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. Role of Gut Microorganisms. Environ Sci Technol 49:12087–12093 DOI

Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...