Optimization of Electrochemical Visualization of Latent Fingerprints with Poly(Neutral Red) on Brass Surfaces
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34641036
PubMed Central
PMC8512869
DOI
10.3390/polym13193220
PII: polym13193220
Knihovny.cz E-zdroje
- Klíčová slova
- brass cartridge, electrochemical deposition, latent fingerprints, poly(neutral red), visualization,
- Publikační typ
- časopisecké články MeSH
This study is focused on the visualization of latent fingerprints on brass surfaces using the method of electrochemical deposition of a polymer film based on poly(neutral red) (PNR). The experiment included (i) optimization of conditions of electrochemical deposition of PNR on brass surfaces, (ii) ATR-FTIR spectroscopic characterization of PNR-modified substrates, and (iii) identification of characteristic details on visualized fingerprints on fired brass cartridges. For electrochemical visualization, it is necessary to keep in mind both kind and "story" substrates. Experimental findings showed that electrochemical visualization carried out on brass plates is a step forward before known findings described in the literature and gives simultaneously a new approach for criminalists in the fight against crime.
Zobrazit více v PubMed
Straus J., Porada V., Fürbach M., Nožička V., Rudáš Z., Suchánek J., Vavera F., Veselá J. Kriminalistická Daktyloskopie. Policejní Akademie ČR; Praha, Czech Republic: 2005. p. 288.
Konrád Z., Porada V., Straus J., Suchánek J. Kriminalistika: Teorie, Metodologie a Metody Kriminalistické Techniky. Aleš Čeněk s.r.o.; Plzeň, Czech Republic: 2014. p. 464.
Francese S., Bradshaw R., Ferguson L.S., Wolstenholme R., Clench M.R., Bleay S. Beyond the ridge pattern: Multi-informative analysis of latent fingermarks by MALDI mass spectrometry. Analyst. 2013;138:4215–4228. doi: 10.1039/c3an36896c. PubMed DOI
Brown R.M., Hillman A.R. Electrochromic enhancement of latent fingerprints by poly(3,4-ethylenedioxythiophene) Phys. Chem. Chem. Phys. 2012;14:8653–8661. doi: 10.1039/c2cp40733g. PubMed DOI
Langenburg G., Hall C. Wiley Encyclopedia of Forensic Science. John Wiley & Sons Ltd.; Hoboken, NJ, USA: 2013. Friction Ridge Skin: Comparison and Identification. DOI
Sapstead R.M., Corden N., Hillman A.R. Latent fingerprint enhancement via conducting electrochromic copolymer films of pyrrole and 3,4-ethylenedioxythiophene on stainless steel. Electrochim. Acta. 2015;162:119–128. doi: 10.1016/j.electacta.2014.11.061. DOI
Rak R., Matyáš V., Říha Z. Biometrie a Identita Člověka ve Forenzních a Komerčních Aplikacích. Grada Publishing; Praha, Czech Republic: 2008. p. 664.
Najdoski M., Oklevski S., Stojkovic G. A Simple Chemical Method for Visualization of Sebaceous Fingerprints on Unfi red Cartridge Cases by Prussian Blue Deposition. Russ. J. Appl. Chem. 2015;88:1896–1901. doi: 10.1134/S10704272150110233. DOI
Christofidis G., Morrissey J., Birkett J.W. Detection of fingermarks—Applicability to metallic surfaces: A literature review. J. Forensic Sci. 2018;63:1616–1627. doi: 10.1111/1556-4029.13775. PubMed DOI
Beresford A.L., Hillman A.R. Electrochromic enhancement of latent fingerprints on stainless steel surfaces. Anal. Chem. 2010;82:483–486. doi: 10.1021/ac9025434. PubMed DOI
Challinger S.E., Baikie I.D., Flannigan G., Halls S., Laing K., Daly L., Daeid N.N. Comparison of scanning Kelvin probe with SEM/EPMA techniques for fingermark recovery from metallic surfaces. Forensic Sci. Int. 2018;291:44–52. doi: 10.1016/j.forsciint.2018.07.025. PubMed DOI
Beresford A.L., Brown R.M., Hillman A.R., Bond J.W. Comparative study of electrochromic enhancement of latent fingerprints with existing development techniques. J. Forensic Sci. 2012;57:93–102. doi: 10.1111/j.1556-4029.2011.01908.x. PubMed DOI
James R.M., Altamimi M.J. The enhancement of friction ridge detail on brass ammunition casings using cold patination fluid. Forensic Sci. Int. 2015;257:385–392. doi: 10.1016/j.forsciint.2015.10.004. PubMed DOI
Jasuja O.P., Singh G., Almog J. Development of latent fingermarks by aqueous electrolytes. Forensic Sci. Int. 2011;207:215–222. doi: 10.1016/j.forsciint.2010.10.011. PubMed DOI
Bond J.W., Phil D. Visualization of Latent Fingerprint Corrosion of Metallic Surfaces. J. Forensic Sci. 2008;53:812–822. doi: 10.1111/j.1556-4029.2008.00738.x. PubMed DOI
Slaninová T., Broncová G., Straus J., Shishkanova T.V. The Visualization of Fingerprints using Conducting Polymer Layers. Chem. Listy. 2019;113:530–539.
Broncova G., Shishkanova T.V., Matejka P., Volf R., Král V. Citrate selectivity of poly(neutral red) electropolymerized films. Anal. Chim. Acta. 2004;511:197–205. doi: 10.1016/j.aca.2004.01.052. DOI
Broncová G., Slaninová T., Dendisová M. Poly(neutral red) modified metal substrates for fingerprint visualization. Chem. Pap. 2021:1–4. doi: 10.1007/s11696-021-01794-6. DOI
Karyakin A.A., Bobrova O.A., Karyakina E.E. Electroreduction of NAD+ to enzymatically active NADH at poly(neutral red) modified electrodes. J. Electroanal. Chem. 1995;399:179–184. doi: 10.1016/0022-0728(95)04300-4. DOI
Chen S.M., Lin K.C. The electrocatalytic properties of polymerized neutral red film modified electrodes. Electroanal. Chem. 2001;511:101–104. doi: 10.1016/S0022-0728(01)00566-6. DOI
Bauldreay J.M., Archer M.D. Dye-modified electrodes for photogalvanic cells. Electrochim. Acta. 1983;28:1515–1552. doi: 10.1016/0013-4686(83)85210-4. DOI
Champod C., Lennard C.J., Margot P., Stoilovic M. Fingerprints and Other Ridge Skin Impressions. 1st ed. CRC Press LLC; Boca Raton, FL, USA: 2004. p. 304. DOI
Beresford A.L. Ph.D. Dissertation. Department of Chemistry University of Leicester; Leicester, UK: 2013. [(accessed on 20 August 2021)]. The Electrochromic Enhancement of Latent Fingerprints on Metal Surfaces. Available online: https://leicester.figshare.com/articles/thesis/The_Electrochromic_Enhancement_of_Latent_Fingerprints_on_Metal_Surfaces/1012657.
Bersellini C., Garofano L., Giannetto M., Lusardi F., Mori G. Development of latent fingerprints on metallic surfaces using electropolymerization processes. J. Forensic Sci. 2001;46:871–877. doi: 10.1520/JFS15060J. PubMed DOI
Kabasakalog M., Kıyak T., Sendil O., Asan A. Electrochemical behavior of brass in 0.1 M NaCl. Appl. Surf. Sci. 2002;193:167–174. doi: 10.1016/S0169-4332(02)00258-1. DOI
Scruton B., Robins B.W., Blott B.H. The Deposition of Fingerprint Films. J. Phys. D Appl. Phys. 1975;8:714–723. doi: 10.1088/0022-3727/8/6/016. DOI
Crane N.J., Bartick E.G., Perlman R.S., Huffman S. Infrared Spectroscopic Imaging for Noninvasive Detection of Latent Fingerprints. J. Forensic Sci. 2007;52:48–53. doi: 10.1111/j.1556-4029.2006.00330.x. PubMed DOI
Bailey M.J., Bright N.J., Croxton R.S., Francese S., Ferguson L.S., Hinder S., Jickells S., Jones B.J., Jones B.N., Kazarian S.G., et al. Chemical Characterization of Latent Fingerprints by Matrix-Assisted Laser Desorption Ionization, Time-of-Flight Secondary Ion Mass Spectrometry, Mega Electron Volt Secondary Mass Spectrometry, Gas Chromatography/Mass Spectrometry, X-ray Photoelectron Spectroscopy, and Attenuated Total Reflection Fourier Transform Infrared Spectroscopic Imaging: An Intercomparison. Anal. Chem. 2012;84:8514–8523. doi: 10.1021/ac302441y. PubMed DOI
Dorakumbura B.N., Boseley R.E., Becker T., Martin D.E., Richter A., Tobin M.J., van Bronswjik W., Vongsvivut J., Hackett M.J., Lewis S.W. Revealing the spatial distribution of chemical species within latent fingermarks using vibrational spectroscopy. Analyst. 2018;143:3961–4208. doi: 10.1039/C7AN01615H. PubMed DOI
Cadd S., Islam M., Manson P., Bleay S. Fingerprint composition and aging: A literature review. Sci. Justice. 2015;55:219–238. doi: 10.1016/j.scijus.2015.02.004. PubMed DOI
Frick A.A., Fritz P., Lewis S.W. Chemical methods for the detection of latent fingermarks. In: Siegal J.A., editor. Forensic Chemistry: Fundamentals and Applications. John Wiley & Sons, Ltd.; New York, NY, USA: 2016. pp. 354–399. DOI
Socrates G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. 3rd ed. Wiley; New York, NY, USA: 2001. p. 364.
Silverstein R.M., Bassler G.C., Morrill T.C. Spectrometric Identification of Organic Compounds. 5th ed. Wiley; New York, NY, USA: 1991. p. 430.
Ozkan S.Z., Karpacheva G.P., Bondarenko G.N., Kolyagin Y.G. Polymers Based on 3-amino-7-dimethylamino-2-methylphenazine hydrochloride: Synthesis, structure, and properties. Polym. Sci. Ser. B. 2015;57:106–115. doi: 10.1134/S156009041502013X. DOI
Jeništová A., Dendisová M., Matějka P. Study of plasmonic nanoparticles interactions with skin layers by vibrational spectroscopy. Eur. J. Pharm. Biopharm. 2017;116:85–93. doi: 10.1016/j.ejpb.2016.12.011. PubMed DOI
Hendel S.J., Young E.R. Introduction to Electrochemistry and the Use of Electrochemistry to Synthesize and Evaluate Catalysts for Water Oxidation and Reduction. J. Chem. Educ. 2016;93:1951–1956. doi: 10.1021/acs.jchemed.6b00230. DOI
Broaddus E., Brubaker J., Gold S.A. Electrochemical Characterization of Platinum Nanotubules Made via Template Wetting Nanofabrication. Int. J. Electrochem. 2013;7:960513. doi: 10.1155/2013/960513. DOI
Girelli C.M.A., Lobo B.J.M., Cunha A.G., Freitas J.C.C., Emmerich F.G. Comparison of practical techniques to develop latent fingermarks on fired and unfired cartridge cases. Forensic Sci. Int. 2015;250:17–26. doi: 10.1016/j.forsciint.2015.02.012. PubMed DOI