Peptaibol-Containing Extracts of Trichoderma atroviride and the Fight against Resistant Microorganisms and Cancer Cells

. 2021 Oct 04 ; 26 (19) : . [epub] 20211004

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34641569

Grantová podpora
VEGA-1/0697/18 Grant Agency of Ministry of Education, Science, Research and Sport of the Slovak Republic
22010090 International Visegrad Fund

Fighting resistance to antibiotics and chemotherapeutics has brought bioactive peptides to the fore. Peptaibols are short α-aminoisobutyric acid-containing peptides produced by Trichoderma species. Here, we studied the production of peptaibols by Trichoderma atroviride O1 and evaluated their antibacterial and anticancer activity against drug-sensitive and multidrug-resistant bacterium and cancer cell lines. This was substantiated by an analysis of the activity of the peptaibol synthetase-encoding gene. Atroviridins, 20-residue peptaibols were detected using MALDI-TOF mass spectrometry. Gram-positive bacteria were susceptible to peptaibol-containing extracts of T. atroviride O1. A synergic effect of extract constituents was possible, and the biolo-gical activity of extracts was pronounced in/after the peak of peptaibol synthetase activity. The growth of methicillin-resistant Staphylococcus aureus was reduced to just under 10% compared to the control. The effect of peptaibol-containing extracts was strongly modulated by the lipoteichoic acid and only slightly by the horse blood serum present in the cultivation medium. Peptaibol-containing extracts affected the proliferation of human breast cancer and human ovarian cancer cell lines in a 2D model, including the multidrug-resistant sublines. The peptaibols influenced the size and compactness of the cell lines in a 3D model. Our findings indicate the molecular basis of peptaibol production in T. atroviride O1 and the potential of its peptaibol-containing extracts as antimicrobial/anticancer agents.

Zobrazit více v PubMed

Mahlapuu M., Håkansson J., Ringstad L., Björn C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front. Cell. Infect. Microbiol. 2016;6:194. doi: 10.3389/fcimb.2016.00194. PubMed DOI PMC

Begicevic R.-R., Falasca M. ABC Transporters in Cancer Stem Cells: Beyond Chemoresistance. Int. J. Mol. Sci. 2017;18:2362. doi: 10.3390/ijms18112362. PubMed DOI PMC

Rončević T., Puizina J., Tossi A. Antimicrobial Peptides as Anti-Infective Agents in Pre-Post-Antibiotic Era? Int. J. Mol. Sci. 2019;20:5713. doi: 10.3390/ijms20225713. PubMed DOI PMC

Bondaryk M., Staniszewska M., Zielińska P., Urbańczyk-Lipkowska Z. Natural Antimicrobial Peptides as Inspiration for Design of a New Generation Antifungal Compounds. J. Fungi. 2017;3:46. doi: 10.3390/jof3030046. PubMed DOI PMC

Andersson D., Hughes D., Kubicek-Sutherland J. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updat. 2016;26:43–57. doi: 10.1016/j.drup.2016.04.002. PubMed DOI

Arcilla M.S., van Hattem J.M., Matamoros S., Melles D.C., Penders J., de Jong M.D., Schultsz C. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect. Dis. 2016;16:147–149. doi: 10.1016/S1473-3099(15)00541-1. PubMed DOI

Gaspar D., Veiga A.S., Castanho M.A.R.B. From antimicrobial to anticancer peptides. A review. Front. Microbiol. 2013;4:294. doi: 10.3389/fmicb.2013.00294. PubMed DOI PMC

Mukherjee P.K., Horwitz B.A., Herrera-Estrella A., Schmoll M., Kenerley C.M. TrichodermaResearch in the Genome Era. Annu. Rev. Phytopathol. 2013;51:105–129. doi: 10.1146/annurev-phyto-082712-102353. PubMed DOI

Harman G.E., Howell C.R., Viterbo A., Chet I., Lorito M. Trichoderma species—opportunistic, avirulent plant symbionts. Nat. Rev. Genet. 2004;2:43–56. doi: 10.1038/nrmicro797. PubMed DOI

Neumann N.K.N., Stoppacher N., Zeilinger S., Degenkolb T., Brückner H., Schuhmacher R. The Peptaibiotics Database—A Comprehensive Online Resource. Chem. Biodivers. 2015;12:743–751. doi: 10.1002/cbdv.201400393. PubMed DOI

Zeilinger S., Gruber S., Bansal R., Mukherjee P.K. Secondary metabolism in Trichoderma—Chemistry meets genomics. Fungal Biol. Rev. 2016;30:74–90. doi: 10.1016/j.fbr.2016.05.001. DOI

Marahiel M.A. Working outside the protein-synthesis rules: Insights into non-ribosomal peptide synthesis. J. Pept. Sci. 2009;15:799–807. doi: 10.1002/psc.1183. PubMed DOI

Vinale F., Sivasithamparam K., Ghisalberti E.L., Marra R., Woo S.L., Lorito M. Trichoderma–plant-pathogen interactions. Soil Biol. Biochem. 2008;40:1–10. doi: 10.1016/j.soilbio.2007.07.002. DOI

Atanasova L., Le Crom S., Gruber S., Coulpier F., Seidl-Seiboth V., Kubicek C.P., Druzhinina I.S. Comparative transcriptomics reveals different strategies of Trichodermamycoparasitism. BMC Genom. 2013;14:121. doi: 10.1186/1471-2164-14-121. PubMed DOI PMC

Tamandegani P.R., Marik T., Zafari D., Balázs D., Vágvölgyi C., Szekeres A., Kredics L. Changes in Peptaibol Production of Trichoderma Species during In Vitro Antagonistic Interactions with Fungal Plant Pathogens. Biomolecules. 2020;10:730. doi: 10.3390/biom10050730. PubMed DOI PMC

Leitgeb B., Szekeres A., Manczinger L., Vágvölgyi C., Kredics L. The History of Alamethicin: A Review of the Most Extensively Studied Peptaibol. Chem. Biodivers. 2007;4:1027–1051. doi: 10.1002/cbdv.200790095. PubMed DOI

Hermosa R., Cardoza R.E., Rubio M.B., Gutiérrez S., Monte E. Biotechnology and Biology of Trichoderma. Elsevier; Amsterdam, The Netherlands: 2014. Secondary Metabolism and Antimicrobial Metabolites of Trichoderma; pp. 125–137.

Wang K.F., Nagarajan R., Camesano T.A. Antimicrobial peptide alamethicin insertion into lipid bilayer: A QCM-D exploration. Colloids Surf. B Biointerfaces. 2014;116:472–481. doi: 10.1016/j.colsurfb.2014.01.036. PubMed DOI

Nagao T., Mishima D., Javkhlantugs N., Wang J., Ishioka D., Yokota K., Norisada K., Kawamura I., Ueda K., Naito A. Structure and orientation of antibiotic peptide alamethicin in phospholipid bilayers as revealed by chemical shift oscillation analysis of solid state nuclear magnetic resonance and molecular dynamics simulation. Biochim. Biophys. Acta (BBA)—Biomembr. 2015;1848:2789–2798. doi: 10.1016/j.bbamem.2015.07.019. PubMed DOI

Huang Q., Tezuka Y., Hatanaka Y., Kikuchi T., Nishi A., Tubaki K. Studies on Metabolites of Mycoparasitic Fungi. IV. Minor Peptaibols of Trichoderma koningii. Chem. Pharm. Bull. 1995;43:1663–1667. doi: 10.1248/cpb.43.1663. PubMed DOI

Brito J.P., Ramada M.H., de Magalhães M.T., Silva L.P., Ulhoa C.J. Peptaibols from Trichoderma asperellum TR356 strain isolated from Brazilian soil. SpringerPlus. 2014;3:1–10. doi: 10.1186/2193-1801-3-600. PubMed DOI PMC

Katoch M., Singh D., Kapoor K.K., Vishwakarma R.A. Trichoderma lixii (IIIM-B4), an endophyte of Bacopa monnieri L. producing peptaibols. BMC Microbiol. 2019;19:98. doi: 10.1186/s12866-019-1477-8. PubMed DOI PMC

Reithner B., Schuhmacher R., Stoppacher N., Pucher M., Brunner K., Zeilinger S. Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection. Fungal Genet. Biol. 2007;44:1123–1133. doi: 10.1016/j.fgb.2007.04.001. PubMed DOI PMC

Gómez-Rodríguez E.Y., Uresti-Rivera E.E., Patrón-Soberano O.A., Islas-Osuna M.A., Flores-Martínez A., Riego-Ruiz L., Rosales-Saavedra M.T., Casas-Flores S. Histone acetyltransferase TGF-1 regulates Trichoderma atroviride secondary metabolism and mycoparasitism. PLoS ONE. 2018;13:e0193872. doi: 10.1371/journal.pone.0193872. PubMed DOI PMC

Peltola J., Ritieni A., Mikkola R., Grigoriev P.A., Pocsfalvi G., Andersson M.A., Salkinoja-Salonen M.S., Lumb R., Stapledon R., Scroop A., et al. Biological Effects of Trichoderma harzianum Peptaibols on Mammalian Cells. Appl. Environ. Microbiol. 2004;70:4906–4910. doi: 10.1128/AEM.70.8.4996-5004.2004. PubMed DOI PMC

Shi M., Wang H.-N., Xie S.-T., Luo Y., Sun C.-Y., Chen X.-L., Zhang Y.-Z. Antimicrobial peptaibols, novel suppressors of tumor cells, targeted calcium-mediated apoptosis and autophagy in human hepatocellular carcinoma cells. Mol. Cancer. 2010;9:26. doi: 10.1186/1476-4598-9-26. PubMed DOI PMC

Víglaš J., Olejníková P. Trichoderma atroviride: An isolate from forest environment with secondary metabolites with high antimicrobial potential. Acta Chim. Slovaca. 2019;12:46–55. doi: 10.2478/acs-2019-0008. DOI

Komon-Zelazowska M., Neuhof T., Dieckmann R., von Döhren H., Herrera-Estrella A., Kubicek C.P., Druzhinina I.S. Formation of Atroviridin by Hypocrea atroviridis Is Conidiation Associated and Positively Regulated by Blue Light and the G Protein GNA3. Eukaryot. Cell. 2007;6:2332–2342. doi: 10.1128/EC.00143-07. PubMed DOI PMC

Rivera-Chávez J., Raja H.A., Graf T.N., Gallagher J.M., Metri P., Xue D., Pearce C.J., Oberlies N.H. Prealamethicin F50 and related peptaibols from Trichoderma arundinaceum: Validation of their authenticity via in situ chemical analysis. RSC Adv. 2017;7:45733–45741. doi: 10.1039/C7RA09602J. PubMed DOI PMC

Neuhof T., Dieckmann R., Druzhinina I.S., Kubicek C.P., Von Döhren H. Intact-cell MALDI-TOF mass spectrometry analysis of peptaibol formation by the genus Trichoderma/Hypocrea: Can molecular phylogeny of species predict peptaibol structures? Microbiology. 2007;153:3417–3437. doi: 10.1099/mic.0.2007/006692-0. PubMed DOI

Marik T., Tyagi C., Balázs D., Urbán P., Szepesi Á., Bakacsy L., Endre G., Rakk D., Szekeres A., Andersson M.A., et al. Structural Diversity and Bioactivities of Peptaibol Compounds from the Longibrachiatum Clade of the Filamentous Fungal Genus Trichoderma. Front. Microbiol. 2019;10:1434. doi: 10.3389/fmicb.2019.01434. PubMed DOI PMC

Keller N.P. Fungal secondary metabolism: Regulation, function and drug discovery. Nat. Rev. Genet. 2019;17:167–180. doi: 10.1038/s41579-018-0121-1. PubMed DOI PMC

Percy M.G., Gründling A. Lipoteichoic Acid Synthesis and Function in Gram-Positive Bacteria. Annu. Rev. Microbiol. 2014;68:81–100. doi: 10.1146/annurev-micro-091213-112949. PubMed DOI

Naclerio G.A., Onyedibe K.I., Sintim H.O. Lipoteichoic Acid Biosynthesis Inhibitors as Potent Inhibitors of S. aureus and E. faecalis Growth and Biofilm Formation. Molecules. 2020;25:2277. doi: 10.3390/molecules25102277. PubMed DOI PMC

van Balen J., Mowery J., Piraino-Sandoval M., Nava-Hoet R.C., Kohn C., Hoet A.E. Molecular epidemiology of environmental MRSA at an equine teaching hospital: Introduction, circulation and maintenance. Vet. Res. 2014;45:31. doi: 10.1186/1297-9716-45-31. PubMed DOI PMC

Cuny C., Abdelbary M.M., Köck R., Layer F., Scheidemann W., Werner G., Witte W. Methicillin-resistant Staphylococcus aureus from infections in horses in Germany are frequent colonizers of veterinarians but rare among MRSA from infections in humans. One Health. 2016;2:11–17. doi: 10.1016/j.onehlt.2015.11.004. PubMed DOI PMC

Biondi B., Peggion C., De Zotti M., Pignaffo C., Dalzini A., Bortolus M., Oancea S., Hilma G., Bortolotti A., Stella L., et al. Conformational properties, membrane interaction, and antibacterial activity of the peptaibiotic chalciporin A: Multitechnique spectroscopic and biophysical investigations on the natural compound and labeled analogs. Pept. Sci. 2018;110:e23083. doi: 10.1002/bip.23083. PubMed DOI

Deslouches B., Di Y.P. Antimicrobial peptides with selective antitumor mechanisms: Prospect for anticancer applications. Oncotarget. 2017;8:46635–46651. doi: 10.18632/oncotarget.16743. PubMed DOI PMC

Tornesello A.L., Borrelli A., Buonaguro L., Buonaguro F.M., Tornesello M.L. Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities. Molecules. 2020;25:2850. doi: 10.3390/molecules25122850. PubMed DOI PMC

He J.-F., Jin D.-X., Luo X.-G., Zhang T.-C. LHH1, a novel antimicrobial peptide with anti-cancer cell activity identified from Lactobacillus casei HZ1. AMB Express. 2020;10:1–15. doi: 10.1186/s13568-020-01139-8. PubMed DOI PMC

Kavianinia I., Stubbing L.A., Abbattista M.R., Harris P.W., Smaill J.B., Patterson A.V., Brimble M.A. Alanine scan-guided synthesis and biological evaluation of analogues of culicinin D, a potent anticancer peptaibol. Bioorganic Med. Chem. Lett. 2020;30:127135. doi: 10.1016/j.bmcl.2020.127135. PubMed DOI

Szlasa W., Zendran I., ZalesiŃska A., Tarek M., Kulbacka J. Lipid composition of the cancer cell membrane. J. Bioenerg. Biomembr. 2020;52:321–342. doi: 10.1007/s10863-020-09846-4. PubMed DOI PMC

Zalba S., Hagen T.L.T. Cell membrane modulation as adjuvant in cancer therapy. Cancer Treat. Rev. 2017;52:48–57. doi: 10.1016/j.ctrv.2016.10.008. PubMed DOI PMC

Bernardes N., Fialho A.M. Perturbing the Dynamics and Organization of Cell Membrane Components: A New Paradigm for Cancer-Targeted Therapies. Int. J. Mol. Sci. 2018;19:3871. doi: 10.3390/ijms19123871. PubMed DOI PMC

Peetla C., Bhave R., Vijayaraghavalu S., Stine A., Kooijman E., Labhasetwar V. Drug Resistance in Breast Cancer Cells: Biophysical Characterization of and Doxorubicin Interactions with Membrane Lipids. Mol. Pharm. 2010;7:2334–2348. doi: 10.1021/mp100308n. PubMed DOI PMC

Peetla C., Vijayaraghavalu S., Labhasetwar V. Biophysics of cell membrane lipids in cancer drug resistance: Implications for drug transport and drug delivery with nanoparticles. Adv. Drug Deliv. Rev. 2013;65:1686–1698. doi: 10.1016/j.addr.2013.09.004. PubMed DOI PMC

Azordegan N., Fraser V., Le K., Hillyer L.M., Ma D.W.L., Fischer G., Moghadasian M.H. Carcinogenesis alters fatty acid profile in breast tissue. Mol. Cell. Biochem. 2012;374:223–232. doi: 10.1007/s11010-012-1523-4. PubMed DOI

Alves A.C.R., Ribeiro D., Nunes C., Reis S. Biophysics in cancer: The relevance of drug-membrane interaction studies. Biochim. Biophys. Acta (BBA)—Biomembr. 2016;1858:2231–2244. doi: 10.1016/j.bbamem.2016.06.025. PubMed DOI

Bernardes N., Garizo A.R., Pinto S., Caniço B., Perdigão C., Fernandes F., Fialho A.M. Azurin interaction with the lipid raft components ganglioside GM-1 and caveolin-1 increases membrane fluidity and sensitivity to anti-cancer drugs. Cell Cycle. 2018;17:1649–1666. doi: 10.1080/15384101.2018.1489178. PubMed DOI PMC

Bessa L.J., Ferreira M., Gameiro P. Evaluation of membrane fluidity of multidrug-resistant isolates of Escherichia coli and Staphylococcus aureus in presence and absence of antibiotics. J. Photochem. Photobiol. B Biol. 2018;181:150–156. doi: 10.1016/j.jphotobiol.2018.03.002. PubMed DOI

Neto S.M., de Almeida K.C., Macedo M.L., Franco O.L. Understanding bacterial resistance to antimicrobial peptides: From the surface to deep inside. Biochim. Biophys. Acta (BBA)—Biomembr. 2015;1848:3078–3088. doi: 10.1016/j.bbamem.2015.02.017. PubMed DOI

Roemhild R., Andersson D.I. Mechanisms and therapeutic potential of collateral sensitivity to antibiotics. PLoS Pathog. 2021;17:e1009172. doi: 10.1371/journal.ppat.1009172. PubMed DOI PMC

Livak K.J., Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Brunner K., Omann M., Pucher M.E., Delic M., Lehner S.M., Domnanich P., Kratochwill K., Druzhinina I., Denk D., Zeilinger S. Trichoderma G protein-coupled receptors: Functional characterisation of a cAMP receptor-like protein from Trichoderma atroviride. Curr. Genet. 2008;54:283–299. doi: 10.1007/s00294-008-0217-7. PubMed DOI PMC

Jelínek M., Balušíková K., Daniel P., Němcová-Fürstová V., Kirubakaran P., Jaček M., Wei L., Wang X., Vondrasek J., Ojima I., et al. Substituents at the C3′ and C3′N positions are critical for taxanes to overcome acquired resistance of cancer cells to paclitaxel. Toxicol. Appl. Pharmacol. 2018;347:79–91. doi: 10.1016/j.taap.2018.04.002. PubMed DOI PMC

Němcová-Fürstová V., Kopperová D., Balušíková K., Ehrlichová M., Brynychova V., Václavíková R., Daniel P., Souček P., Kovář J. Characterization of acquired paclitaxel resistance of breast cancer cells and involvement of ABC transporters. Toxicol. Appl. Pharmacol. 2016;310:215–228. doi: 10.1016/j.taap.2016.09.020. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace