Metal-catalyst-free gas-phase synthesis of long-chain hydrocarbons
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article
PubMed
34642345
PubMed Central
PMC8511129
DOI
10.1038/s41467-021-26184-0
PII: 10.1038/s41467-021-26184-0
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Development of sustainable processes for hydrocarbons synthesis is a fundamental challenge in chemistry since these are of unquestionable importance for the production of many essential synthetic chemicals, materials and carbon-based fuels. Current industrial processes rely on non-abundant metal catalysts, temperatures of hundreds of Celsius and pressures of tens of bars. We propose an alternative gas phase process under mild reaction conditions using only atomic carbon, molecular hydrogen and an inert carrier gas. We demonstrate that the presence of CH2 and H radicals leads to efficient C-C chain growth, producing micron-length fibres of unbranched alkanes with an average length distribution between C23-C33. Ab-initio calculations uncover a thermodynamically favourable methylene coupling process on the surface of carbonaceous nanoparticles, which is kinematically facilitated by a trap-and-release mechanism of the reactants and nanoparticles that is confirmed by a steady incompressible flow simulation. This work could lead to future alternative sustainable synthetic routes to critical alkane-based chemicals or fuels.
Catania Astrophysical Observatory Via Santa Sofia 78 95123 Catania Italy
Department of Chemistry Ben Gurion University of the Negev Beer Sheva 84105 Israel
Department of Mechanical and Aerospace Engineering Princeton University Princeton NJ 08544 USA
Institute for Mechanical Systems ETH Zurich Leonhardstrasse 21 8092 Zurich Switzerland
Institute of Chemical Physics Université Paris Saclay 91400 Orsay France
Institute of Physics of the CAS Cukrovarnicka 10 Prague Czech Republic
Instituto de Ciencia y Tecnología de Polímeros ICTP CSIC c Juan de la Cierva 3 28006 Madrid Spain
Instituto de Física Fundamental c Serrano 123 28006 Madrid Spain
Instituto de Nanociencia y Materiales de Aragon University of Zaragoza 50009 Zaragoza Spain
Instituto de Química Física Rocasolano c Serrano 119 28006 Madrid Spain
Laboratorio de Microscopias Avanzadas University of Zaragoza 50009 Zaragoza Spain
Photoactivated Processes Unit IMDEA Energía Av Ramón de la Sagra 3 28935 Móstoles Spain
School of Engineering Brown University Providence RI 02912 USA
Synchrotron Soleil L'Orme des Merisiers Saint Aubin BP 48 91192 Gif sur Yvette France
See more in PubMed
Grela, K. Olefin Metathesis: Theory and Practice10.1002/9781118711613 (Wiley Online Library, 2014).
de Meijere A., Bräse S., Oestreich, M. Metal-Catalyzed Cross-Coupling Reactions and More10.1002/9783527655588 (Wiley Online Library, 2013).
Choi J, Fu GC. Transition metal–catalyzed alkyl-alkyl bond formation: another dimension in cross-coupling chemistry. Science. 2017;356:eaaf7230. doi: 10.1126/science.aaf7230. PubMed DOI PMC
Khodakov AY, Chu W, Fongarland P. Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev. 2007;107:1692–1744. doi: 10.1021/cr050972v. PubMed DOI
Li J, et al. Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. Nat. Catal. 2018;1:787–793. doi: 10.1038/s41929-018-0144-z. DOI
Kang M-K, Nielsen J. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms. J. Ind. Microbiol. Biotechnol. 2017;44:613–622. doi: 10.1007/s10295-016-1814-y. PubMed DOI PMC
de la Peña O’Shea VA, Campos-Martín JM, Fierro JLG. Strong enhancement of the Fischer–Tropsch synthesis on a Co/SiO2 catalyst activate in syngas mixture. Catal. Commun. 2004;5:635–638. doi: 10.1016/j.catcom.2004.08.005. DOI
de la Peña O’Shea VA, Álvarez-Galván MC, Campos-Martín JM, Fierro JLG. Fischer–Tropsch synthesis on mono- and bimetallic Co and Fe catalysts in fixed-bed and slurry reactors. Appl. Catal. A Gen. 2007;326:65–73. doi: 10.1016/j.apcata.2007.03.037. DOI
Huang Z, et al. Enhanced photocatalytic alkane production from fatty acid decarboxylation via inhibition of radical oligomerization. Nat. Catal. 2020;3:170–178. doi: 10.1038/s41929-020-0423-3. DOI
Zimmerman JB, Anastas PT, Erythropel HC, Leitner W. Designing for a green chemistry future. Science. 2020;367:397–400. doi: 10.1126/science.aay3060. PubMed DOI
Martínez L, et al. Precisely controlled fabrication, manipulation and in-situ analysis of Cu based nanoparticles. Sci. Rep. 2018;8:7250. doi: 10.1038/s41598-018-25472-y. PubMed DOI PMC
Martínez L, et al. Prevalence of non-aromatic carbonaceous molecules in the inner regions of circumstellar envelopes. Nat. Astron. 2020;4:97–105. doi: 10.1038/s41550-019-0899-4. PubMed DOI PMC
Lolla D, et al. Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy. Nanoscale. 2016;8:120–128. doi: 10.1039/C5NR01619C. PubMed DOI
Kuei B, et al. New opportunities in transmission electron microscopy of polymers. Mater. Sci. Eng. R Rep. 2020;139:100516. doi: 10.1016/j.mser.2019.100516. DOI
Santoro G, et al. The chemistry of cosmic dust analogs from C, C2, and C2H2 in C-rich circumstellar envelopes. Astrophys. J. 2020;895:97. doi: 10.3847/1538-4357/ab9086. PubMed DOI PMC
Gall MJ, Hendra PJ, Peacock OJ, Cudby MEA, Willis HA. The laser-Raman spectrum of polyethylene: the assignment of the spectrum to fundamental modes of vibration. Spectrochim. Acta A Mol. Spectrosc. 1972;28:1485–1496. doi: 10.1016/0584-8539(72)80118-1. DOI
Hendra PJ, Jobic HP, Marsden EP, Bloor D. The vibrational spectrum of polyethylene—III. Polarized Raman spectra of “single crystal texture” polyethylene and a single crystal of C23H48. Spectrochim. Acta A Mol. Spectrosc. 1977;33:445–452. doi: 10.1016/0584-8539(77)80054-8. DOI
Abbate S, Zerbi G, Wunder SL. Fermi resonances and vibrational spectra of crystalline and amorphous polyethylene chains. J. Phys. Chem. 1982;86:3140–3149. doi: 10.1021/j100213a017. DOI
Zhang D, et al. Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber. Carbon. 2019;142:278–284. doi: 10.1016/j.carbon.2018.10.062. DOI
Manawi YM, Ihsanullah, Samara A, Al-Ansari T, Atieh MA. A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials. 2018;11:822. doi: 10.3390/ma11050822. PubMed DOI PMC
Wu X, Liu Y, Yang H, Shi Z. Large-scale synthesis of high-quality graphene sheets by an improved alternating current arc-discharge method. RSC Adv. 2016;6:93119–93124. doi: 10.1039/C6RA22273K. DOI
Harding LB, Guadagnini R, Schatz GC. Theoretical studies of the reactions hydrogen atom + methylidyne → carbon + hydrogen and carbon + hydrogen → methylene using an ab initio global ground-state potential surface for methylene. J. Phys. Chem. 1993;97:5472–5481. doi: 10.1021/j100123a005. DOI
Dash MR, Rajakumar B. Abstraction and addition kinetics of C2H radicals with CH4, C2H6, C3H8, C2H4, and C3H6: CVT/SCT/ISPE and hybrid meta-DFT methods. Phys. Chem. Chem. Phys. 2015;17:3142–3156. doi: 10.1039/C4CP04677C. PubMed DOI
Martínez JI, Martín-Gago JA, Cernicharo J, de Andres PL. Etching of graphene in a hydrogen-rich atmosphere toward the formation of hydrocarbons in circumstellar clouds. J. Phys. Chem. C. 2014;118:26882–26886. doi: 10.1021/jp509195d. PubMed DOI PMC
Mukherjee P, Balamurugan B, Shield JE, Sellmyer DJ. Direct gas-phase formation of complex core–shell and three-layer Mn–Bi nanoparticles. RSC Adv. 2016;6:92765–92770. doi: 10.1039/C6RA15799H. DOI
Koten MA, Mukherjee P, Shield JE. Core–shell nanoparticles driven by surface energy differences in the Co–Ag, W–Fe, and Mo–Co systems. Part. Part. Syst. Charact. 2015;32:848–853. doi: 10.1002/ppsc.201500019. DOI
Kousal J, et al. Magnetron-sputtered copper nanoparticles: lost in gas aggregation and found by in situ X-ray scattering. Nanoscale. 2018;10:18275–18281. doi: 10.1039/C8NR06155F. PubMed DOI
Shelemin A, et al. Nucleation and growth of magnetron-sputtered Ag nanoparticles as witnessed by time-resolved small angle X-ray scattering. Part. Part. Syst. Charact. 2020;37:1900436. doi: 10.1002/ppsc.201900436. DOI
Guckenheimer, J. & Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields10.1007/978-1-4612-1140-2 (Springer, 1983).
Dazzi A, Prazeres R, Glotin F, Ortega JM. Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt. Lett. 2005;30:2388–2390. doi: 10.1364/OL.30.002388. PubMed DOI
Horcas I, et al. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007;78:13705. doi: 10.1063/1.2432410. PubMed DOI
Henkelman G, Uberuaga BP, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000;113:9901–9904. doi: 10.1063/1.1329672. DOI
Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm J. A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 2003;28:250–258. doi: 10.1016/S0927-0256(03)00111-3. DOI
Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B. 1990;41:7892–7895. doi: 10.1103/PhysRevB.41.7892. PubMed DOI
Clark SJ, et al. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 2005;220:567–570. doi: 10.1524/zkri.220.5.567.65075. DOI
Tkatchenko A, Scheffler M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009;102:73005. doi: 10.1103/PhysRevLett.102.073005. PubMed DOI
Weller HG, Tabor G, Jasak H, Fureby C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 1998;12:620–631. doi: 10.1063/1.168744. DOI
Jang DS, Jetli R, Acharya S. Comparison of the PISO, SIMPLER, and SIMPLEC algorithms for the treatment of the pressure-velocity coupling in steady flow problems. Numer. Heat. Transf. 1986;10:209–228. doi: 10.1080/10407788608913517. DOI