• This record comes from PubMed

Metal-catalyst-free gas-phase synthesis of long-chain hydrocarbons

. 2021 Oct 12 ; 12 (1) : 5937. [epub] 20211012

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic

Document type Journal Article

Links

PubMed 34642345
PubMed Central PMC8511129
DOI 10.1038/s41467-021-26184-0
PII: 10.1038/s41467-021-26184-0
Knihovny.cz E-resources

Development of sustainable processes for hydrocarbons synthesis is a fundamental challenge in chemistry since these are of unquestionable importance for the production of many essential synthetic chemicals, materials and carbon-based fuels. Current industrial processes rely on non-abundant metal catalysts, temperatures of hundreds of Celsius and pressures of tens of bars. We propose an alternative gas phase process under mild reaction conditions using only atomic carbon, molecular hydrogen and an inert carrier gas. We demonstrate that the presence of CH2 and H radicals leads to efficient C-C chain growth, producing micron-length fibres of unbranched alkanes with an average length distribution between C23-C33. Ab-initio calculations uncover a thermodynamically favourable methylene coupling process on the surface of carbonaceous nanoparticles, which is kinematically facilitated by a trap-and-release mechanism of the reactants and nanoparticles that is confirmed by a steady incompressible flow simulation. This work could lead to future alternative sustainable synthetic routes to critical alkane-based chemicals or fuels.

See more in PubMed

Grela, K. Olefin Metathesis: Theory and Practice10.1002/9781118711613 (Wiley Online Library, 2014).

de Meijere A., Bräse S., Oestreich, M. Metal-Catalyzed Cross-Coupling Reactions and More10.1002/9783527655588 (Wiley Online Library, 2013).

Choi J, Fu GC. Transition metal–catalyzed alkyl-alkyl bond formation: another dimension in cross-coupling chemistry. Science. 2017;356:eaaf7230. doi: 10.1126/science.aaf7230. PubMed DOI PMC

Khodakov AY, Chu W, Fongarland P. Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev. 2007;107:1692–1744. doi: 10.1021/cr050972v. PubMed DOI

Li J, et al. Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. Nat. Catal. 2018;1:787–793. doi: 10.1038/s41929-018-0144-z. DOI

Kang M-K, Nielsen J. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms. J. Ind. Microbiol. Biotechnol. 2017;44:613–622. doi: 10.1007/s10295-016-1814-y. PubMed DOI PMC

de la Peña O’Shea VA, Campos-Martín JM, Fierro JLG. Strong enhancement of the Fischer–Tropsch synthesis on a Co/SiO2 catalyst activate in syngas mixture. Catal. Commun. 2004;5:635–638. doi: 10.1016/j.catcom.2004.08.005. DOI

de la Peña O’Shea VA, Álvarez-Galván MC, Campos-Martín JM, Fierro JLG. Fischer–Tropsch synthesis on mono- and bimetallic Co and Fe catalysts in fixed-bed and slurry reactors. Appl. Catal. A Gen. 2007;326:65–73. doi: 10.1016/j.apcata.2007.03.037. DOI

Huang Z, et al. Enhanced photocatalytic alkane production from fatty acid decarboxylation via inhibition of radical oligomerization. Nat. Catal. 2020;3:170–178. doi: 10.1038/s41929-020-0423-3. DOI

Zimmerman JB, Anastas PT, Erythropel HC, Leitner W. Designing for a green chemistry future. Science. 2020;367:397–400. doi: 10.1126/science.aay3060. PubMed DOI

Martínez L, et al. Precisely controlled fabrication, manipulation and in-situ analysis of Cu based nanoparticles. Sci. Rep. 2018;8:7250. doi: 10.1038/s41598-018-25472-y. PubMed DOI PMC

Martínez L, et al. Prevalence of non-aromatic carbonaceous molecules in the inner regions of circumstellar envelopes. Nat. Astron. 2020;4:97–105. doi: 10.1038/s41550-019-0899-4. PubMed DOI PMC

Lolla D, et al. Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy. Nanoscale. 2016;8:120–128. doi: 10.1039/C5NR01619C. PubMed DOI

Kuei B, et al. New opportunities in transmission electron microscopy of polymers. Mater. Sci. Eng. R Rep. 2020;139:100516. doi: 10.1016/j.mser.2019.100516. DOI

Santoro G, et al. The chemistry of cosmic dust analogs from C, C2, and C2H2 in C-rich circumstellar envelopes. Astrophys. J. 2020;895:97. doi: 10.3847/1538-4357/ab9086. PubMed DOI PMC

Gall MJ, Hendra PJ, Peacock OJ, Cudby MEA, Willis HA. The laser-Raman spectrum of polyethylene: the assignment of the spectrum to fundamental modes of vibration. Spectrochim. Acta A Mol. Spectrosc. 1972;28:1485–1496. doi: 10.1016/0584-8539(72)80118-1. DOI

Hendra PJ, Jobic HP, Marsden EP, Bloor D. The vibrational spectrum of polyethylene—III. Polarized Raman spectra of “single crystal texture” polyethylene and a single crystal of C23H48. Spectrochim. Acta A Mol. Spectrosc. 1977;33:445–452. doi: 10.1016/0584-8539(77)80054-8. DOI

Abbate S, Zerbi G, Wunder SL. Fermi resonances and vibrational spectra of crystalline and amorphous polyethylene chains. J. Phys. Chem. 1982;86:3140–3149. doi: 10.1021/j100213a017. DOI

Zhang D, et al. Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber. Carbon. 2019;142:278–284. doi: 10.1016/j.carbon.2018.10.062. DOI

Manawi YM, Ihsanullah, Samara A, Al-Ansari T, Atieh MA. A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials. 2018;11:822. doi: 10.3390/ma11050822. PubMed DOI PMC

Wu X, Liu Y, Yang H, Shi Z. Large-scale synthesis of high-quality graphene sheets by an improved alternating current arc-discharge method. RSC Adv. 2016;6:93119–93124. doi: 10.1039/C6RA22273K. DOI

Harding LB, Guadagnini R, Schatz GC. Theoretical studies of the reactions hydrogen atom + methylidyne → carbon + hydrogen and carbon + hydrogen → methylene using an ab initio global ground-state potential surface for methylene. J. Phys. Chem. 1993;97:5472–5481. doi: 10.1021/j100123a005. DOI

Dash MR, Rajakumar B. Abstraction and addition kinetics of C2H radicals with CH4, C2H6, C3H8, C2H4, and C3H6: CVT/SCT/ISPE and hybrid meta-DFT methods. Phys. Chem. Chem. Phys. 2015;17:3142–3156. doi: 10.1039/C4CP04677C. PubMed DOI

Martínez JI, Martín-Gago JA, Cernicharo J, de Andres PL. Etching of graphene in a hydrogen-rich atmosphere toward the formation of hydrocarbons in circumstellar clouds. J. Phys. Chem. C. 2014;118:26882–26886. doi: 10.1021/jp509195d. PubMed DOI PMC

Mukherjee P, Balamurugan B, Shield JE, Sellmyer DJ. Direct gas-phase formation of complex core–shell and three-layer Mn–Bi nanoparticles. RSC Adv. 2016;6:92765–92770. doi: 10.1039/C6RA15799H. DOI

Koten MA, Mukherjee P, Shield JE. Core–shell nanoparticles driven by surface energy differences in the Co–Ag, W–Fe, and Mo–Co systems. Part. Part. Syst. Charact. 2015;32:848–853. doi: 10.1002/ppsc.201500019. DOI

Kousal J, et al. Magnetron-sputtered copper nanoparticles: lost in gas aggregation and found by in situ X-ray scattering. Nanoscale. 2018;10:18275–18281. doi: 10.1039/C8NR06155F. PubMed DOI

Shelemin A, et al. Nucleation and growth of magnetron-sputtered Ag nanoparticles as witnessed by time-resolved small angle X-ray scattering. Part. Part. Syst. Charact. 2020;37:1900436. doi: 10.1002/ppsc.201900436. DOI

Guckenheimer, J. & Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields10.1007/978-1-4612-1140-2 (Springer, 1983).

Dazzi A, Prazeres R, Glotin F, Ortega JM. Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt. Lett. 2005;30:2388–2390. doi: 10.1364/OL.30.002388. PubMed DOI

Horcas I, et al. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007;78:13705. doi: 10.1063/1.2432410. PubMed DOI

Henkelman G, Uberuaga BP, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000;113:9901–9904. doi: 10.1063/1.1329672. DOI

Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm J. A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 2003;28:250–258. doi: 10.1016/S0927-0256(03)00111-3. DOI

Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B. 1990;41:7892–7895. doi: 10.1103/PhysRevB.41.7892. PubMed DOI

Clark SJ, et al. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 2005;220:567–570. doi: 10.1524/zkri.220.5.567.65075. DOI

Tkatchenko A, Scheffler M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009;102:73005. doi: 10.1103/PhysRevLett.102.073005. PubMed DOI

Weller HG, Tabor G, Jasak H, Fureby C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 1998;12:620–631. doi: 10.1063/1.168744. DOI

Jang DS, Jetli R, Acharya S. Comparison of the PISO, SIMPLER, and SIMPLEC algorithms for the treatment of the pressure-velocity coupling in steady flow problems. Numer. Heat. Transf. 1986;10:209–228. doi: 10.1080/10407788608913517. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...